化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2777-2786.DOI: 10.11949/0438-1157.20240159
收稿日期:
2024-02-04
修回日期:
2024-05-11
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
赵亮
作者简介:
赵亮(1979—),男,博士,副教授,zlhmf@dlut.edu.cn
基金资助:
Liang ZHAO(), Yuqiao LI, De ZHANG, Shengqiang SHEN
Received:
2024-02-04
Revised:
2024-05-11
Online:
2024-08-25
Published:
2024-08-21
Contact:
Liang ZHAO
摘要:
通过实验的方式研究旋流室顶部具有螺旋形导流结构的空心喷嘴。搭建可容纳1~4个喷嘴工作的喷淋实验台,制作可视化螺旋喷嘴,进行喷淋特性实验。使用高速摄像机进行内部流场特性的可视化研究,并通过测量装置采集外部流场喷淋密度的分布情况。分析不同工况下内部流场空气柱、湍流流动的变化规律以及外部流场喷淋密度的特性。结果表明,在内外压差的作用下,喷嘴内部形成空气柱,由于单侧切向入口和螺旋导流结构的作用,空气柱中心线与旋流室中心线存在偏移。外部流场周向有效喷淋密度呈现双峰值分布,峰值区域分别位于120°和280°附近。
中图分类号:
赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786.
Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle[J]. CIESC Journal, 2024, 75(8): 2777-2786.
入口压力/kPa | QL/(kg/(s·m2)) | qL/(kg/(s·m2)) | δL/% | QY/(kg/(s·m2)) | qY/(kg/(s·m2)) | δY/% |
---|---|---|---|---|---|---|
50 | 451.8 | 472.4 | 4.4 | 394.0 | 412.1 | 4.4 |
100 | 636.1 | 668.3 | 4.8 | 592.4 | 618.8 | 4.3 |
150 | 754.6 | 794.7 | 5.1 | 714.9 | 748.8 | 4.5 |
200 | 863.7 | 904.6 | 4.5 | 835.2 | 880.6 | 5.2 |
表1 方桶数据与仪器数据对比
Table 1 Comparison between square barrel data and instrument data
入口压力/kPa | QL/(kg/(s·m2)) | qL/(kg/(s·m2)) | δL/% | QY/(kg/(s·m2)) | qY/(kg/(s·m2)) | δY/% |
---|---|---|---|---|---|---|
50 | 451.8 | 472.4 | 4.4 | 394.0 | 412.1 | 4.4 |
100 | 636.1 | 668.3 | 4.8 | 592.4 | 618.8 | 4.3 |
150 | 754.6 | 794.7 | 5.1 | 714.9 | 748.8 | 4.5 |
200 | 863.7 | 904.6 | 4.5 | 835.2 | 880.6 | 5.2 |
1 | Gasson C. Global water crisis promotes desalination boom[J]. Membrane Technology, 2009(1): 10-11. |
2 | Lin S S, Zhao H Y, Zhu L P, et al. Seawater desalination technology and engineering in China: a review[J]. Desalination, 2021, 498: 114728. |
3 | 石为民. 我国海水淡化行业发展现状及前景[J]. 通用机械, 2020(6): 19-22. |
Shi W M. Development status of sea water desalination industry and its prospect[J]. General Machinery, 2020(6): 19-22. | |
4 | Khawaji A D, Kutubkhanah I K, Wie J M. Advances in seawater desalination technologies[J]. Desalination, 2008, 221(1/2/3): 47-69. |
5 | 宋瀚文, 宋达, 张辉, 等. 国内外海水淡化发展现状[J]. 膜科学与技术, 2021, 41(4): 170-176. |
Song H W, Song D, Zhang H, et al. Status of seawater desalination in China and abroad[J]. Membrane Science and Technology, 2021, 41(4): 170-176. | |
6 | 张雨山. 海水淡化技术产业现状与发展趋势[J]. 工业水处理, 2021, 41(9): 26-30. |
Zhang Y S. The status and development trend of seawater desalination tech industry[J]. Industrial Water Treatment, 2021, 41(9): 26-30. | |
7 | 胥建美, 吴水波, 苏慧超, 等. 我国海水淡化标准化发展现状分析[J]. 净水技术, 2019, 38(4): 65-69. |
Xu J M, Wu S B, Su H C, et al. Current status analysis of standardization for seawater desalination industry in China[J]. Water Purification Technology, 2019, 38(4): 65-69. | |
8 | Hu B S, Zhang F, Wang X L, et al. Experimental study on the liquid distributor of horizontal tube falling film evaporator[J]. Advanced Materials Research, 2012, 550/551/552/553: 2897-2902. |
9 | 郭松. 横管降膜布液旋流喷嘴的模拟研究[D]. 大连: 大连理工大学, 2013. |
Guo S. Simulation analysis on swirl nozzle for liquid distributor in horizontal-tube falling film device[D]. Dalian: Dalian University of Technology, 2013. | |
10 | Dong J M, Wang W N, Han Z T, et al. Experimental investigation of the steam ejector in a single-effect thermal vapor compression desalination system driven by a low-temperature heat source[J]. Energies, 2018, 11(9): 2282. |
11 | Som S K. Theoretical and experimental studies on the coefficient of discharge and spray cone angle of a swirl spray pressure nozzle using a power-law non-Newtonian fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1983, 12(1): 39-68. |
12 | Mao C P, Oechsle V, Chigier N. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays[J]. Journal of Fluids Engineering, 1987, 109(1): 64-69. |
13 | Breña de la Rosa A, Wang G, Bachalo W D. The effect of swirl on the velocity and turbulence fields of a liquid spray[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(1): 72-81. |
14 | Santolaya J L, Aísa L A, Calvo E, et al. Analysis by droplet size classes of the liquid flow structure in a pressure swirl hollow cone spray[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(1): 125-131. |
15 | Yule A J, Widger I R. Swirl atomizers operating at high water pressure[J]. International Journal of Mechanical Sciences, 1996, 38(8/9): 981-999. |
16 | 丁红明, 诸惠民. 离心式压力雾化喷嘴性能计算方法的比较[J]. 航空发动机, 1999, 25(3): 44-50. |
Ding H M, Zhu H M. Comparison of performance calculation methods of centrifugal pressure atomizing nozzle[J]. Aeroengine, 1999, 25(3): 44-50. | |
17 | Nonnenmacher S, Piesche M. Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids[J]. Chemical Engineering Science, 2000, 55(19): 4339-4348. |
18 | Mondal D, Datta A, Sarkar A. Prediction of drop size distribution in a spray from a pressure swirl atomizer using maximum entropy formalism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(7): 831-838. |
19 | Park H, Heister S D. Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers[J]. Physics of Fluids, 2006, 18(5): 052103. |
20 | Xie J L, Gan Z W, Wong T N, et al. Thermal effects on a pressure swirl nozzle in spray cooling[J]. International Journal of Heat and Mass Transfer, 2014, 73: 130-140. |
21 | Qin C, Loth E. Numerical description of a pressure-swirl nozzle spray[J]. Chemical Engineering and Processing - Process Intensification, 2016, 107: 68-79. |
22 | Jedelsky J, Maly M, Pinto del Corral N, et al. Air-liquid interactions in a pressure-swirl spray[J]. International Journal of Heat and Mass Transfer, 2018, 121: 788-804. |
23 | Laurila E, Roenby J, Maakala V, et al. Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation[J]. International Journal of Multiphase Flow, 2019, 113: 371-388. |
24 | Zheng H L, Liu Z M, Wang K F, et al. Influence of orifice geometry on atomization characteristics of pressure swirl atomizer[J]. Science Progress, 2020, 103(3): 36850420950182. |
25 | 王牧. 旋流式实心喷嘴流动与喷淋特性实验研究[D]. 大连: 大连理工大学, 2018. |
Wang M. Experimental investigation on the flow and spray characteristics of the swirl solid-cone nozzle[D]. Dalian: Dalian University of Technology, 2018. | |
26 | Krištof O, Bulejko P, Svěrák T. Experimental study on spray breakup in turbulent atomization using a spiral nozzle[J]. Processes, 2019, 7(12): 911. |
27 | Ma D Y, Chang S N, Yang C. Investigation on film formation characteristics of pressure-swirl nozzle[J]. Coatings, 2021, 11(7): 773. |
28 | Han H, Wang P F, Liu R H, et al. Experimental study on atomization characteristics of two common spiral channel pressure nozzles[J]. E3S Web of Conferences, 2019, 81: 01022. |
29 | 龚辰, 杨敏官, 康灿, 等. 喷嘴结构对射流表面波影响的实验研究[J]. 工程热物理学报, 2018, 39(3): 534-538. |
Gong C, Yang M G, Kang C, et al. The experimental study of the nozzle effect on the jet surface wave[J]. Journal of Engineering Thermophysics, 2018, 39(3): 534-538. | |
30 | 李红禹. 螺旋导流结构旋流喷嘴喷淋特性研究[D]. 大连: 大连理工大学, 2021. |
Li H Y. Investigation on spray characteristics of swirling nozzle with spiral guide structure[D]. Dalian: Dalian University of Technology, 2021. | |
31 | 张德. 螺旋喷嘴结构参数对流场特性的影响[D]. 大连: 大连理工大学, 2022. |
Zhang D. Influence of structural parameters of spiral nozzles on flow field characteristics[D]. Dalian: Dalian University of Technology, 2022. |
[1] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[2] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[3] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[4] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[5] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[6] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[7] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[8] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[9] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[10] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[11] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[12] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[13] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[14] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[15] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||