化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 126-134.DOI: 10.11949/0438-1157.20240556
收稿日期:
2024-05-26
修回日期:
2024-07-04
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
杜文静
作者简介:
李新泽(2000—),男,硕士研究生,lxz2023@mail.sdu.edu.cn
基金资助:
Xinze LI(), Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU(
)
Received:
2024-05-26
Revised:
2024-07-04
Online:
2024-12-25
Published:
2024-12-17
Contact:
Wenjing DU
摘要:
为满足大功率LED芯片的热管理需求,设计了蝶形脉动热管(pulsating heat pipe,PHP),实验研究了不同工况下(加热功率、工作流体、安装角度、充液率)的传热性能,基于热阻法分析了蝶形PHP的热管理性能。结果表明,自然对流冷凝工况下,蝶形PHP表现出优秀的传热性能和均温性,任意安装角度下,均能够满足Bridgelux 100W LED芯片的散热需求,热阻不超过0.292 K/W,最低可达0.174 K/W,均温性系数低至0.263。加热功率显著影响PHP的传热性能,提高功率能够抑制壁温脉动幅度,增强脉动周期性。存在一个交叉功率,大于此功率后充注去离子水的蝶形PHP性能更好。加热功率和安装角度均会影响最佳充液率,二者具有一定的交互作用。
中图分类号:
李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134.
Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management[J]. CIESC Journal, 2024, 75(S1): 126-134.
变量 | 数值 |
---|---|
工作流体 | 去离子水、丙酮 |
加热功率/W | 0~120(间隔20) |
充液率/% | 30、40、45、50、60 |
内径/外径/mm | 2/3 |
安装角度/(°) | 0、30、60、90 |
表1 实验工况
Table 1 Experimental test conditions
变量 | 数值 |
---|---|
工作流体 | 去离子水、丙酮 |
加热功率/W | 0~120(间隔20) |
充液率/% | 30、40、45、50、60 |
内径/外径/mm | 2/3 |
安装角度/(°) | 0、30、60、90 |
参数 | 最大相对不确定度 |
---|---|
充液率/% | 2.5% |
加热功率/W | 0.14% |
PHP热阻/(K/W) | 4.8% |
表2 参数不确定度
Table 2 Uncertainty of parameters
参数 | 最大相对不确定度 |
---|---|
充液率/% | 2.5% |
加热功率/W | 0.14% |
PHP热阻/(K/W) | 4.8% |
15 | Zhang M, Yang H H, Yin Y, et al. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids[J]. CIESC Journal, 2022, 73(3): 1136-1146. |
16 | Zhou Y, Yang H H, Liu L W, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid[J]. Powder Technology, 2021, 384: 414-422. |
17 | 杨洪海, 张苗, 刘利伟, 等. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
Yang H H, Zhang M, Liu L W, et al. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. | |
18 | Rudresha S, Babu E R, Thejaraju R. Experimental investigation and influence of filling ratio on heat transfer performance of a pulsating heat pipe[J]. Thermal Science and Engineering Progress, 2023, 38: 101649. |
19 | Shi W X, Li M, Chen H D, et al. Effect of evaporating-condensing length ratio and heat flux on starting and operating characteristic of pulsating heat pipe[J]. Applied Thermal Engineering, 2024, 246: 122963. |
20 | Mucci A, Kholi F K, Chetwynd-Chatwin J, et al. Numerical investigation of flow instability and heat transfer characteristics inside pulsating heat pipes with different numbers of turns[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120934. |
21 | Dai Y C, Zhang R, Qin Z Y, et al. Research on the thermal performance and stability of three-dimensional array pulsating heat pipe for active/passive coupled thermal management application[J]. Applied Thermal Engineering, 2024, 245: 122793. |
22 | Jang D S, Ham S H, Shin H H, et al. Thermal performance improvement of a radial pulsating heat pipe with diverging channels by adopting Tesla valves at various heat fluxes[J]. Applied Thermal Engineering, 2024, 237: 121799. |
23 | Zhang D, Wang L, Xu B R, et al. Experimental and simulation study on flow heat transfer characteristics of flat pulsating heat pipe with wide and narrow interphase channels[J]. Applied Thermal Engineering, 2024, 245: 122806. |
24 | Yang H H, Wang J, Wang N, et al. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer[J]. Energy and Buildings, 2019, 197: 1-6. |
25 | Shang F M, Yang Q J, Fan S L, et al. Experimental study on novel pulsating heat pipe radiator for horizontal CPU cooling under different wind speeds[J]. Thermal Science, 2022, 26(1 Part B): 449-462. |
1 | Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions[J]. Applied Physics Letters, 1962, 1(4): 82-83. |
2 | Juntunen E, Tapaninen O, Sitomaniemi A, et al. Copper-core MCPCB with thermal vias for high-power COB LED modules[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1410-1417. |
3 | Kyatam S, Camacho P, Rodrigues L, et al. Thermal analysis of high power LEDs using different PCB materials[C]//2017 European Conference on Circuit Theory and Design (ECCTD). Catania, Italy: IEEE, 2017: 1-4. |
4 | Li J, Lin F, Wang D M, et al. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips[J]. Applied Thermal Engineering, 2013, 56(1/2): 18-26. |
5 | Ben Abdelmlek K, Araoud Z, Charrada K, et al. Optimization of the thermal distribution of multi-chip LED package[J]. Applied Thermal Engineering, 2017, 126: 653-660. |
6 | Ben Abdelmlek K, Araoud Z, Ghnay R, et al. Effect of thermal conduction path deficiency on thermal properties of LEDs package[J]. Applied Thermal Engineering, 2016, 102: 251-260. |
7 | Wang C, Yuan K J, Song Q, et al. Performance of pulsating heat pipe with a stimulus of auxiliary heat load for battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2024, 223: 125190. |
8 | Solanki A, Kapadia R G. Review of the effect of foldability and working fluid on the performance of flexible pulsating heat pipe for foldable applications[J]. Materials Today: Proceedings, 2023, 82: 234-240. |
9 | Kholi F K, Park S, Yang J S, et al. A detailed review of pulsating heat pipe correlations and recent advances using artificial neural network for improved performance prediction[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124010. |
10 | Fan Y C, Wang Z G, Guo J W, et al. Capture of kinetic behavior of ethanol-based copper oxides in pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125392. |
11 | Wang L P, Cai Y, Zhan H R. Lorenz-like equation of two-phase flow in a single closed loop pulsating heat pipe[J]. International Journal of Thermal Sciences, 2023, 186: 108132. |
12 | Xu Y Y, Xue Y Q, Qi H, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
13 | Lyu B K, Xu D, Wang W, et al. Experimental investigation of a serial-parallel configuration helium pulsating heat pipe[J]. Cryogenics, 2023, 131: 103668. |
14 | 赵佳腾, 吴晨辉, 戴宇成, 等. 脉动热管强化传热及其应用研究进展[J]. 化工学报, 2022, 73(2): 535-565. |
Zhao J T, Wu C H, Dai Y C, et al. Research progress on heat transfer enhancement and application of oscillating heat pipe[J]. CIESC Journal, 2022, 73(2): 535-565. | |
15 | 张苗, 杨洪海, 尹勇, 等. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146. |
26 | Chen Y, He Y Q, Zhu X Q. Flower-type pulsating heat pipe for a solar collector[J]. International Journal of Energy Research, 2020, 44(9): 7734-7745. |
27 | Mahajan G, Cho H, Smith A, et al. Experimental analysis of atypically long finned oscillating heat pipe for ventilation waste heat recovery application[J]. Journal of Thermal Science, 2020, 29(3): 667-675. |
28 | 张双星, 刘舫辰, 张义飞, 等. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
Zhang S X, Liu F C, Zhang Y F, et al. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe[J]. CIESC Journal, 2023, 74(S1): 165-171. | |
29 | Lv L C, Li J, Zhou G H. A robust pulsating heat pipe cooler for integrated high power LED chips[J]. Heat and Mass Transfer, 2017, 53(11): 3305-3313. |
30 | Wang H, Qu J, Peng Y Q, et al. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application[J]. Energy Conversion and Management, 2019, 189: 215-222. |
31 | Lin Z R, Wang S F, Huo J P, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes[J]. Applied Thermal Engineering, 2011, 31(14/15): 2221-2229. |
32 | 林梓荣. 自激式振荡流热管热输送性能研究[D]. 广州: 华南理工大学, 2012. |
Lin Z R. Study on heat transport capability of self-exciting mode oscillating-flow heat pipe[D]. Guangzhou: South China University of Technology, 2012. | |
33 | 李新泽, 张双星, 杨洪海, 等. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
Li X Z, Zhang S X, Yang H H, et al. Experimental study on performance of new type of pulsating heat pipe for battery cooling[J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[3] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[4] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
[5] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[6] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[7] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[8] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[9] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[10] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[11] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[12] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[13] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[14] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[15] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||