化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 95-107.DOI: 10.11949/0438-1157.20240262
杜得辉1(), 冯威1, 张江辉1, 项燕龙2, 乔高攀2, 李蔚1,3(
)
收稿日期:
2024-03-05
修回日期:
2024-03-29
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
李蔚
作者简介:
杜得辉(1999—),男,硕士研究生,4022030086@mails.qust.edu.cn
基金资助:
Dehui DU1(), Wei FENG1, Jianghui ZHANG1, Yanlong XIANG2, Gaopan QIAO2, Wei LI1,3(
)
Received:
2024-03-05
Revised:
2024-03-29
Online:
2024-12-25
Published:
2024-12-17
Contact:
Wei LI
摘要:
采用实验的方法对比制冷剂在一根光滑管(ST管)与三根强化管内的流动沸腾换热特性。实验所采用的三根强化管分别为具有疏水表面的换热管(HYD管)、具有人字形微翅片的换热管(HB管) 和同时具有人字形微翅片与疏水表面复合结构的换热管(HB/HYD管)。在饱和温度为279、283与288 K,质量流速范围为50~150 kg/(m2·s),进出口干度分别保持在0.2和0.8的工况下进行实验。从结果分析可以看出,HB管与HYD管的传热系数分别约为光滑管的1.37倍与1.42倍,而具有复合表面结构的HB/HYD管具有最高的传热系数,约为光滑管的1.45~1.63倍。针对所测传热系数选择了6种经验预测关联式模型,并利用光滑管进行验证,证明所选关联式可靠。结合强化管的结构特点开发新型关联式模型,该模型对所研究强化管的传热系数预测较好,三种强化管约有90%以上的数据点在误差范围为±10%以内,这对工业设计换热器的方案进行了优化,进而提高换热器的效率与可靠性。
中图分类号:
杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107.
Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube[J]. CIESC Journal, 2024, 75(S1): 95-107.
参数 | ST管 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|---|
长度/m | 1.7 | 1.7 | 1.7 | 1.7 |
厚度/mm | 0.61 | 0.61 | 0.61 | 0.61 |
翅片高度/mm | — | 0.052 | — | 0.052 |
翅片间距/mm | — | 0.636 | — | 0.636 |
螺旋角/(°) | — | 18 | — | 18 |
补强角/(°) | — | 161.4 | — | 161.4 |
表1 四根测试管的几何参数
Table 1 Geometric parameters of four test tubes
参数 | ST管 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|---|
长度/m | 1.7 | 1.7 | 1.7 | 1.7 |
厚度/mm | 0.61 | 0.61 | 0.61 | 0.61 |
翅片高度/mm | — | 0.052 | — | 0.052 |
翅片间距/mm | — | 0.636 | — | 0.636 |
螺旋角/(°) | — | 18 | — | 18 |
补强角/(°) | — | 161.4 | — | 161.4 |
饱和温度/K | 液相密度/ (kg/m3) | 气相密度/ (kg/m3) | 液相动力黏度/ (Pa·s) | 气相动力黏度/ (Pa·s) | 液态热导率/ [W/(m·K)] | 表面张力/ (N/m) | 汽化潜热/ (kJ/kg) |
---|---|---|---|---|---|---|---|
279 | 1034.2 | 26.714 | 0.000141 | 0.0000118 | 0.14053 | 0.0099381 | 305.66 |
283 | 1019.7 | 30.232 | 0.0001346 | 0.0000119 | 0.13741 | 0.009256 | 298.92 |
288 | 1280.8 | 35.19 | 0.00012731 | 0.00001226 | 0.13354 | 0.008417 | 290.19 |
表2 R32在不同温度下的基本热物性参数
Table 2 Basic physical parameters of R32 at different temperatures
饱和温度/K | 液相密度/ (kg/m3) | 气相密度/ (kg/m3) | 液相动力黏度/ (Pa·s) | 气相动力黏度/ (Pa·s) | 液态热导率/ [W/(m·K)] | 表面张力/ (N/m) | 汽化潜热/ (kJ/kg) |
---|---|---|---|---|---|---|---|
279 | 1034.2 | 26.714 | 0.000141 | 0.0000118 | 0.14053 | 0.0099381 | 305.66 |
283 | 1019.7 | 30.232 | 0.0001346 | 0.0000119 | 0.13741 | 0.009256 | 298.92 |
288 | 1280.8 | 35.19 | 0.00012731 | 0.00001226 | 0.13354 | 0.008417 | 290.19 |
测量参数 | 误差值 | 计算参数 | 误差值 |
---|---|---|---|
直径/mm | ± 0.02 | 质量流速/(kg/(m2·s)) | ± 1.47% |
长度/mm | ± 1 | 热通量/(W/m2) | ± 1.76% |
温度/K | ± 0.1 | 蒸汽质量 | ± 2.68% |
压力/kPa | 满量程±0.075% | 传热系数/(W/(m2·K)) | ± 9.15% |
水流量/(kg/h) | 观测值的± 0.35% | ||
制冷剂流量/(kg/h) | 观测值的±0.2% |
表3 测量参数的误差值
Table 3 Uncertainties of measuring parameters
测量参数 | 误差值 | 计算参数 | 误差值 |
---|---|---|---|
直径/mm | ± 0.02 | 质量流速/(kg/(m2·s)) | ± 1.47% |
长度/mm | ± 1 | 热通量/(W/m2) | ± 1.76% |
温度/K | ± 0.1 | 蒸汽质量 | ± 2.68% |
压力/kPa | 满量程±0.075% | 传热系数/(W/(m2·K)) | ± 9.15% |
水流量/(kg/h) | 观测值的± 0.35% | ||
制冷剂流量/(kg/h) | 观测值的±0.2% |
强化性能 | HB/HYD管 | 现有商业强化管 |
---|---|---|
强化结构 | 采用人字形翅片与疏水表面复合强化结构,其表面结构具有一定的螺旋角,流体流经时有一定的接触角 | 一般采用单一结构,为内螺纹、凹坑、微翅片或涂层结构 |
强化原理 | 人字形微翅片强化结构可增加流体的换热面积,削弱了流体的表面张力,使流体分布均匀,翅片的存在增加了二次流,使得换热更充分。疏水表面,可增加成核位点的数量。二者共同作用,从而强化换热 | 一般是增加成核位点、增加换热面积或者促进形成涡流等 |
传热系数 | 提高,并且其疏水表面结构可以减少换热阻力 | 提高,但压降阻力也会增加 |
耐腐蚀性 | 采用不锈钢304L,具有耐腐蚀性能 | 一般为铜管,随着使用时间的增加,对腐蚀的敏感程度也会增加 |
表4 HB/HYD管与现有商业强化管强化性能对比
Table 4 Comparison of strengthening performance between HB/HYD tube and existing commercial enhanced tube
强化性能 | HB/HYD管 | 现有商业强化管 |
---|---|---|
强化结构 | 采用人字形翅片与疏水表面复合强化结构,其表面结构具有一定的螺旋角,流体流经时有一定的接触角 | 一般采用单一结构,为内螺纹、凹坑、微翅片或涂层结构 |
强化原理 | 人字形微翅片强化结构可增加流体的换热面积,削弱了流体的表面张力,使流体分布均匀,翅片的存在增加了二次流,使得换热更充分。疏水表面,可增加成核位点的数量。二者共同作用,从而强化换热 | 一般是增加成核位点、增加换热面积或者促进形成涡流等 |
传热系数 | 提高,并且其疏水表面结构可以减少换热阻力 | 提高,但压降阻力也会增加 |
耐腐蚀性 | 采用不锈钢304L,具有耐腐蚀性能 | 一般为铜管,随着使用时间的增加,对腐蚀的敏感程度也会增加 |
文献 | 公式 |
---|---|
Shah[ | |
Chaddock等[ | |
Kandlikar[ | |
Kandlikar and Balasabramanian[ | |
Kuang等[ | |
Schrock等[ |
表5 传热系数预测关联式模型
Table 5 Correlation model for heat transfer coefficient prediction
文献 | 公式 |
---|---|
Shah[ | |
Chaddock等[ | |
Kandlikar[ | |
Kandlikar and Balasabramanian[ | |
Kuang等[ | |
Schrock等[ |
误差 | Shah等[ | Chaddock等[ | Kandlikar等[ | Kandlikar[ | Kuang等[ | Shrock等[ |
---|---|---|---|---|---|---|
MAE | 13.3% | 11.45% | 26.3% | 20.9% | 21.8% | 21.2% |
MRE | -11.5% | 8.41% | 26.3% | -18.7% | 21.8% | 21.2% |
表6 光滑管实验值与预测值之间的偏差
Table 6 Deviations between experimental and predicted values of smooth tube
误差 | Shah等[ | Chaddock等[ | Kandlikar等[ | Kandlikar[ | Kuang等[ | Shrock等[ |
---|---|---|---|---|---|---|
MAE | 13.3% | 11.45% | 26.3% | 20.9% | 21.8% | 21.2% |
MRE | -11.5% | 8.41% | 26.3% | -18.7% | 21.8% | 21.2% |
强化管 | a | b | c | d | e |
---|---|---|---|---|---|
HB管 | 192 | 0.244 | 0.068 | 0.128 | 0.126 |
HYD管 | 600 | 0.2 | -0.085 | 0.368 | 0.055 |
HB/HYD管 | 1110 | 0.233 | 0.06 | -0.151 | 0.492 |
表7 新型关联式各待定系数值
Table 7 Values of undetermined coefficients of the new correlation
强化管 | a | b | c | d | e |
---|---|---|---|---|---|
HB管 | 192 | 0.244 | 0.068 | 0.128 | 0.126 |
HYD管 | 600 | 0.2 | -0.085 | 0.368 | 0.055 |
HB/HYD管 | 1110 | 0.233 | 0.06 | -0.151 | 0.492 |
误差 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|
MAE | 4.97% | 4.95% | 4.14% |
MRE | -1.32% | 0.67% | -0.53% |
表8 强化管实验值与新关联式预测值的偏差
Table 8 Deviations between the experimental value of the enhanced tube and the predicted value of the new correlation
误差 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|
MAE | 4.97% | 4.95% | 4.14% |
MRE | -1.32% | 0.67% | -0.53% |
1 | Shafaee M, Mashouf H, Sarmadian A, et al. Evaporation heat transfer and pressure drop characteristics of R-600a in horizontal smooth and helically dimpled tubes[J]. Applied Thermal Engineering, 2016, 107: 28-36. |
2 | Kukulka D J, Yan H, Smith R, et al. Condensation and evaporation characteristics of flows inside three dimensional Vipertex enhanced heat transfer tubes[J]. Chemical Engineering Transaction, 2017, 61: 1777-1782. |
3 | Kim M H, Shin J S. Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2005, 28(6): 940-948. |
4 | 张丹亭, 陶乐仁, 李庆普, 等. R32在水平强化管内的流动沸腾换热特性研究[J]. 热能动力工程, 2019, 34(3): 97-102+133. |
Zhang D T, TAO L R, Li Q P, et al. Study on the convective heat transfer of R32 inside horizontal enhanced tubes[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(3): 97-102+133. | |
5 | 唐苇羽, 陈景祥, 韩锦程, 等.不同强化换热管内流动沸腾换热特性对比[J]. 浙江大学学报(工学版), 2018, 52(6): 1216-1222. |
Tang W Y, Chen J X, Han J C, et al. Comparison of flow boiling heat transfer characteristics inside different enhanced heat transfer tubes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1216-1222. | |
6 | Jige D, Sagawa K, Inoue N. Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes[J]. International Journal of Refrigeration, 2017, 76: 206-218. |
7 | Vidhyarthi N K, Deb S, Gajghate S S, et al. A comprehensive assessment of two-phase flow boiling heat transfer in micro-fin tubes using pure and blended eco-friendly refrigerants[J]. Energies, 2023, 16(4): 1951. |
8 | 郭雨, 顾宗保, 张传财, 等. 不锈钢三维强化管管内流动沸腾与冷凝传热实验[J]. 青岛科技大学学报(自然科学版), 2020, 41(5): 102-108. |
Guo Y, Gu Z B, Zhang C C, et al. Experiments on flow boiling and condensation heat transfer in stainless steel three-dimensional enhanced tubes[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2020, 41(5): 102-108. | |
9 | Kim N H. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries[J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3519-3530. |
10 | He G G, Zhou S, Li D D, et al. Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2018, 125: 943-958. |
11 | Li W. Two-phase heat transfer correlations in three-dimensional hierarchical tube[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122827. |
12 | Luo X L, Xia Y K, Huang J K, et al. Experimental investigation on high-temperature flow boiling heat transfer characteristics of R245fa in a horizontal circular tube[J]. Applied Thermal Engineering, 2023, 225: 120260. |
13 | Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. Heat Mass Transf, 1986, 29(3): 351-358. |
14 | Kundu A, Kumar R, Gupta A. Comparative experimental study on flow boiling heat transfer characteristics of pure and mixed refrigerants[J]. International Journal of Refrigeration, 2014, 45: 136-147. |
15 | Kandlikar S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer. ASME, 1990, 112(1): 219-228. |
16 | Fang X D, Wu Q, Yuan Y L. A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 107: 972-981. |
17 | Saitoh S, Daiguji H, Hihara E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5215-5225. |
18 | Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. |
19 | 冯龙龙, 钟珂, 张羽森, 等. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509. |
Feng L L, Zhong K, Zhang Y S, et al. Flow boiling heat transfer characteristics of R1234yf in horizontal microchannel[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3502-3509. | |
20 | 仇富强, 李庆普. 微肋管内R513a流动沸腾换热特性实验研究[J]. 六盘水师范学院学报, 2022, 34(2): 104-111. |
Qiu F Q, Li Q P. Experimental investigation on flow boiling heat transfer characteristics inside the micro-fin tube[J]. Journal of Liupanshui Normal University, 2022, 34(2): 104-111. | |
21 | 苑云潇, 张良, 柳建华. R1234yf与R134a小管径内流动沸腾换热特性研究[J]. 化学工程, 2021, 49(5): 38-42. |
Yuan Y X, Zhang L, Liu J H. Flow boiling heat transfer characteristics of R1234yf and R134a in small-diameter tubes[J]. Chemical Engineering (China), 2021, 49(5): 38-42. | |
22 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-367. |
23 | Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable physical properties[M]//Advances in Heat Transfer. Amsterdam:Elsevier, 1970: 503-564. |
24 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal Fluid Science 1988, 1: 3-17. |
25 | Shah M M. Chart correlation for saturated boiling heat transfer: equations and further study[J].Ashrae Transactions, 1982, 88(1): 185-187. |
26 | Chaddock J B, Brunemann H. Forced convection of refrigerants in horizontal tubes[J]. School of Engineering, Duke University, 1967, HL-113. |
27 | Kandlikar S G, Balasubramanian P. An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels[J]. Heat Transfer Engineering, 2004, 25(3): 86-93. |
28 | Kuang Y W, Han F, Sun L J, et al. Saturated hydrogen nucleate flow boiling heat transfer coefficients study based on artificial neural network[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121406. |
29 | Schrock V E, Grossman L M. Forced convection boiling in tubes[J]. Nuclear Science and Engineering, 1962, 12(4): 474-481. |
30 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
[1] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[2] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[3] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[4] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[5] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[6] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[7] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[8] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[9] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[10] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[11] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[12] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[13] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[14] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[15] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||