化工学报 ›› 2025, Vol. 76 ›› Issue (1): 107-119.DOI: 10.11949/0438-1157.20240584
王佳欣1(), 韦艳红1, 农顺洋1, 熊艳舒2, 李楣2, 李文1(
)
收稿日期:
2024-05-30
修回日期:
2024-09-13
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
李文
作者简介:
王佳欣(2000—),女,硕士研究生,wjiaxinwang@163.com
基金资助:
Jiaxin WANG1(), Yanhong WEI1, Shunyang NONG1, Yanshu XIONG2, Mei LI2, Wen LI1(
)
Received:
2024-05-30
Revised:
2024-09-13
Online:
2025-01-25
Published:
2025-02-08
Contact:
Wen LI
摘要:
现有糖汁脱色剂存在食品安全隐患及吸附量低等局限性。开发一款绿色无毒且具有高吸附量的超支化聚乙烯亚胺功能化壳聚糖气凝胶(HPCA)用于糖汁脱色,并初步探究其吸附美拉德色素(MLD)性能。为将高效糖汁脱色吸附剂投入到工业化应用中,还需对吸附理论机制进行更深层次探索。通过多重量子化学理论计算,从分子角度系统揭示HPCA吸附MLD潜在机理。静电势、平均局部电离能、静电势相互作用分析结果表明,HPCA捕获MLD主要由质子化胺基与羧酸根之间电荷作用介导。在分子水平上优化出三种可视化最优捕获构型,分析结果表明强的静电相互作用使得构型Ⅰ中HPCA与MLD紧密接触成为最稳定的构型。前沿分子轨道、独立梯度模型和Hirshfeld表面分析揭示HPCA捕获MLD存在氢键和范德华力等弱相互作用,且MLD在不同捕获构型中均主要充当氢键受体。多重量子化学理论计算研究方法可为探究分子水平上吸附相互作用机制提供可行研究方向,对研究吸附微观机制具有重要意义。
中图分类号:
王佳欣, 韦艳红, 农顺洋, 熊艳舒, 李楣, 李文. 多重量子化学理论计算解析多胺修饰壳聚糖气凝胶吸附美拉德色素分子机制[J]. 化工学报, 2025, 76(1): 107-119.
Jiaxin WANG, Yanhong WEI, Shunyang NONG, Yanshu XIONG, Mei LI, Wen LI. Molecular mechanism analysis of melanoidin adsorption by polyamine-modified chitosan aerogel based on multiple quantum chemical theory calculations[J]. CIESC Journal, 2025, 76(1): 107-119.
图1 (a)HPCA的EDS元素(C、N和O)映射图;(b)溶液pH对HPCA去除MLD的影响;(c)HPCA的SEM图像;(d)HPCA立于月季花瓣上;(e)HPCA吸附前后MLD溶液变化[7]
Fig.1 (a) EDS elemental (C, N, and O) mapping images of HPCA; (b) Influence of pH on MLD removal by HPCA; (c) SEM image of HPCA; (d) HPCA rested on the petals of Chinese rose; (e) Change of MLD aqueous solutions before and after adsorption by HPCA[7]
图2 (a) ESP彩色分子表面(白—H;蓝—N;红—O;青—C);(b) ESP分子表面积统计分布(1 Å=0.1 nm);(c) HPCA、PHPCA、UMLD及MLD分子表面ESP极值分析(白—H;蓝—N;红—O;黄—C)
Fig.2 (a) ESP colored molecular surface (white—H; blue—N; red—O; cyan—C); (b) ESP statistical distribution on molecular surface area(1 Å=0.1 nm); (c) Molecular surface ESP extrema analysis of HPCA, PHPCA, UMLD, and MLD (white—H; blue—N; red—O; yellow—C)
图3 (a) ALIE彩色MLD分子表面及表面极值(白—H;蓝—N;红—O;青—C);(b) HPCA吸附MLD结合能;HPCA吸附MLD的(c) ESP穿透构型及(d) ESP中和构型
Fig.3 (a) ALIE colored MLD molecular surface with surface extrema (white—H; blue—N; red—O; cyan—C); (b) Binding energy for MLD adsorption by HPCA; (c) ESP penetration configuration and (d) ESP neutralization configuration for HPCA adsorption of MLD
图4 (a)三种优化构型的HOMO和LUMO轨道分布及其能量值;(b) HPCA和MLD的HOMO和LUMO轨道分布及其能量值(白—H;蓝—N;红—O;青—C)
Fig.4 (a) HOMO and LUMO orbital distributions and their energy values for three optimized configurations; (b) HOMO and LUMO orbital distributions and their energy values for HPCA and MLD (white—H; blue—N; red—O; cyan—C)
图5 (a) IGM图中各种颜色的解释;(b)构型Ⅰ、(c)构型Ⅱ和 (d) 构型Ⅲ中HPCA与MLD弱相互作用散点图;(e)所有构型可视化弱相互作用区域图(白—H;蓝—N;红—O;青—C);(f) 根据原子δg指数着色所有构型的分子结构;(g) HPCA吸附MLD所有构型的键合路径
Fig.5 (a) Interpretation of various colors in IGM map; Scatter maps of weak interaction between HPCA and MLD in (b) configuration Ⅰ, (c) configuration Ⅱ and (d) configuration Ⅲ; (e) Photographs of visualized weak-interaction regions of all configurations (white—H; blue—N; red—O; cyan—C); (f) Coloring molecule structures by atomic δg index across all configurations; (g) Bonding paths of MLD adsorption onto HPCA across all configurations
图7 (a) 构型Ⅰ中MLD的(ⅰ)O···H-N、(ⅱ)H···H和(ⅲ)O-H···N的HIS及其相应指纹图;(b) 构型Ⅱ中MLD的(ⅰ)O···H-N、(ⅱ)H···H、(ⅲ)O-H···O和(ⅳ)C-H···N的HIS及其相应指纹图;(c) HIS及其相应指纹图中O原子局部接触面占总接触面之比
Fig.7 (a) HIS and the corresponding fingerprint plots of MLD for (ⅰ) O···H—N, (ⅱ) H···H, and (ⅲ) O—H···N in configuration Ⅰ; (b) HIS and the corresponding fingerprint plots of MLD for (ⅰ) O···H—N, (ⅱ) H···H, (ⅲ) O-H···O, and (ⅳ) C-H···N in configuration Ⅱ; (c) Proportion of the local contact area of O atom to the total contact area in HIS and the corresponding fingerprint plot
1 | Xiao Y, Lu H Q, Shi C R, et al. High-performance quaternary ammonium-functionalized chitosan/graphene oxide composite aerogel for remelt syrup decolorization in sugar refining[J]. Chemical Engineering Journal, 2022, 428: 132575. |
2 | Ji X R, Shen Z J, Xu W P, et al. Synthesis of hyper-cross-linked nonpolar polystyrene divinylbenzene resins by pendent vinyl groups and application to the decolorization of cane molasses[J]. Applied Biochemistry and Biotechnology, 2023, 195(5): 3406-3424. |
3 | Jiang Y, Li J, Li D, et al. Bio-based hyperbranched epoxy resins: synthesis and recycling[J]. Chemical Society Reviews, 2024, 53(2): 624-655. |
4 | Guo L Y, Lu H Q, Rackemann D, et al. Quaternary ammonium-functionalized magnetic chitosan microspheres as an effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs)[J]. Chemical Engineering Journal, 2021, 416: 129084. |
5 | Li M X, Li W, Xiong Y S, et al. Preparation of quaternary ammonium-functionalized metal-organic framework/chitosan composite aerogel with outstanding scavenging of melanoidin[J]. Separation and Purification Technology, 2023, 316: 123785. |
6 | Zhou L S, Lu H Q, Jia R, et al. Insights into mass transfer mechanism and micro-interaction of melanoidin adsorption on polyethyleneimine-functionalised pomelo-peel-derived aerogel[J]. Separation and Purification Technology, 2023, 310: 123079. |
7 | Tang J Y, Xiong Y S, Li M X, et al. Hyperbranched polyethyleneimine-functionalised chitosan aerogel for highly efficient removal of melanoidins from wastewater[J]. Journal of Hazardous Materials, 2023, 447: 130731. |
8 | Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. |
9 | Lu T, Manzetti S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms[J]. Structural Chemistry, 2014, 25(5): 1521-1533. |
10 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
11 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
12 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Revision B.01[CP]. Wallingford CT: Gaussian Inc., 2016. |
13 | Hariharan P C, Pople J A. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory[J]. Molecular Physics, 1974, 27(1): 209-214. |
14 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
15 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
16 | Sjoberg P, Murray J S, Brinck T, et al. Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity[J]. Canadian Journal of Chemistry, 1990, 68(8): 1440-1443. |
17 | Du N, Huang L Y, Xiong Y S, et al. Micro-mechanism insights into the adsorption of anionic dyes using quaternary ammonium-functionalised chitosan aerogels[J]. Carbohydrate Polymers, 2023, 313: 120855. |
18 | Jiao L, Wei W, Liao C Y, et al. Quaternary ammonium-functionalized rosin-derived resin for the high-performance capture of caramels: experiments and quantum chemical theory simulations[J]. Journal of Hazardous Materials, 2024, 461: 132633. |
19 | Zhang Y, Zhao L, Kang M D, et al. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chemical Engineering Journal, 2021, 426: 131873. |
20 | Cao S R, Zhu R, Wu D H, et al. How hydrogen bonding and π-π interactions synergistically facilitate mephedrone adsorption by bio-sorbent: an in-depth microscopic scale interpretation[J]. Environmental Pollution, 2024, 342: 123044. |
21 | Wu X Z, Wang X Q, Hu Y L, et al. Adsorption mechanism study of multinuclear metal coordination cluster Zn5 for anionic dyes congo red and methyl orange: experiment and molecular simulation[J]. Applied Surface Science, 2022, 586: 152745. |
22 | Ren J J, Zheng L C, Su Y M, et al. Competitive adsorption of Cd(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations[J]. Chemical Engineering Journal, 2022, 445: 136778. |
23 | Jiang Z S, Huang L L, Fan Y X, et al. Contrasting effects of microplastic aging upon the adsorption of sulfonamides and its mechanism[J]. Chemical Engineering Journal, 2022, 430: 132939. |
24 | 辛国鹏, 毛敏, 刘信平, 等. 二氢杨梅素分子结构与性质的密度泛函理论研究[J]. 原子与分子物理学报, 2025, 42(1): 35-40. |
Xin G P, Mao M, Liu X P, et al. Density functional theory study on molecular structure and properties of dihydromyricetin[J]. Journal of Atomic and Molecular Physics, 2025, 42(1): 35-40. | |
25 | Xiong Y S, Li M X, Jia R, et al. Polyethyleneimine/polydopamine-functionalized self-floating microspheres for caramel adsorption: interactions and phenomenological mass transfer kinetics[J]. Separation and Purification Technology, 2023, 313: 123315. |
26 | 韦伟, 余海清, 唐小松, 等. 松香基弱碱型阴离子吸附树脂去除糖蜜酒精废液中类黑精[J]. 环境科学学报, 2023, 43(8): 96-110. |
Wei W, Yu H Q, Tang X S, et al. Removal of melanoidin by rosin-based weak basic type anion-adsorption resin from molasses-based distillery effluent[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 96-110. | |
27 | Zhou L S, Xiong Y S, Jia R, et al. (3-chloro-2-hydroxypropyl) trimethylammonium chloride and polyethyleneimine co-modified pomelo peel cellulose-derived aerogel for remelt syrup decolorization in sugar refining[J]. International Journal of Biological Macromolecules, 2023, 229: 1054-1068. |
28 | Jia R, Nong X M, Lu H Q, et al. Multidimensional decipherment of interactions in invert sugar-amino acid co-degradation colorants (IACDCs) capture by polyamine co-modified shaddock peel cellulose/graphene oxide aerogel[J]. Separation and Purification Technology, 2024, 337: 126299. |
29 | Zheng W Q, Li X, Wang X Y, et al. Assessing the recyclability of superbase-derived ionic liquids in cellulose processing: an insight from degradation mechanisms[J]. Chemical Engineering Journal, 2023, 465: 142718. |
30 | Xu H H, Zhu S D, Xia M Z, et al. Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal[J]. Journal of Hazardous Materials, 2022, 423: 127192. |
31 | Justen G A, Carneiro Neto J S, Sousa Santana F, et al. Crystal structure and Hirshfeld surface analysis of 5-hydroxypentanehydrazide[J]. Acta Crystallographica Section E Crystallographic Communications, 2024, 80(5): 459-462. |
32 | Ghous F, Shukla S, Rai S, et al. Synthesis, crystal structure elucidation and interactions in 1, 2, 4, 5-tetraazaspiro[5.5]undecane-3-thione: hirshfeld surface analysis, 2D fingerprint plots and 3D energy framework calculations[J]. Chemical Data Collections, 2022, 41: 100933. |
33 | Xu H H, Zhu S D, Lu K R, et al. Preparation of hierarchically floral ZIF-8 derived carbon@polyaniline@Ni/Al layered double hydroxides composite with outstanding removal phenomenon for saccharin[J]. Chemical Engineering Journal, 2022, 450: 138127. |
[1] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
[2] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
[3] | 贾娟, 杨扬, 朱恂, 叶丁丁, 陈蓉, 廖强. 用于伤口敷料的水凝胶电刺激释药性能[J]. 化工学报, 2024, 75(7): 2700-2708. |
[4] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[5] | 马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603. |
[6] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
[7] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[8] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[9] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[10] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[11] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[12] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[13] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[14] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[15] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 491
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||