化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2700-2708.DOI: 10.11949/0438-1157.20240286
收稿日期:
2024-03-12
修回日期:
2024-05-17
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
杨扬
作者简介:
贾娟(1997—),女,硕士研究生,jj1394867324@163.com
基金资助:
Juan JIA(), Yang YANG(
), Xun ZHU, Dingding YE, Rong CHEN, Qiang LIAO
Received:
2024-03-12
Revised:
2024-05-17
Online:
2024-07-25
Published:
2024-08-09
Contact:
Yang YANG
摘要:
水凝胶是一种具有三维空间网络结构的高分子材料,可以作为理想的新型伤口敷料,但在自然释放条件下水凝胶伤口敷料释药速率缓慢。为了促进伤口愈合,以羧甲基壳聚糖和海藻酸钠为基体,在水凝胶中加入了导电剂聚吡咯和抗菌药物盐酸环丙沙星,制备了载药水凝胶,构筑了水凝胶电刺激释药装置。研究了不同聚吡咯含量下水凝胶的溶胀性能、力学性能和导电性能的变化,以及在电刺激条件下盐酸环丙沙星药物释放规律。研究表明:聚吡咯与基体投料比为0.4时,水凝胶在理化性能和力学性能上综合表现最佳,更适合用于伤口敷料。电刺激作用可以有效加速水凝胶内部的药物释放,对于伤口的治疗具有积极的意义。
中图分类号:
贾娟, 杨扬, 朱恂, 叶丁丁, 陈蓉, 廖强. 用于伤口敷料的水凝胶电刺激释药性能[J]. 化工学报, 2024, 75(7): 2700-2708.
Juan JIA, Yang YANG, Xun ZHU, Dingding YE, Rong CHEN, Qiang LIAO. Hydrogel-based drug releasing system with external electricity stimulation for wound dressing[J]. CIESC Journal, 2024, 75(7): 2700-2708.
图3 SA/CMCS/PPy导电水凝胶的SEM图(a);水凝胶不同位置的聚吡咯形貌(b)
Fig.3 SEM images of SA/CMCS/PPy conducting hydrogels (a); SEM images of PPy at different positions of hydrogels (b)
图10 不同PPy投料比水凝胶的抗压缩强度随压缩率的变化(a);不同PPy投料比水凝胶的最大抗压缩强度的对比(b)
Fig.10 The compression strength curves of hydrogels with different PPy mass ratio as a function of compression ratio (a); Comparison of the maximum compressive strength of hydrogels with different PPy mass ratio (b)
1 | 李欣鹤. 聚(苯乙烯-N,N-二甲基丙烯酰胺)纳米微球杂化水凝胶的制备及性能研究[D]. 长春: 长春工业大学, 2020. |
Li X H. Preparation and properties research of poly(styrene-N, N-dimethylacrylamide)nano-sphere hybrid hydrogel[D]. Changchun: Changchun University of Technology, 2020. | |
2 | 李子程, 李攻科, 胡玉玲. 刺激响应聚合物在生物医药中的应用[J]. 化学进展, 2017, 29(12): 1480-1487. |
Li Z C, Li G K, Hu Y L. Stimuli-responsive polymers in biomedical applications[J]. Progress in Chemistry, 2017, 29(12): 1480-1487. | |
3 | 郑博元, 纪锋颖, 侯智善, 等. 生物兼容蛋白水凝胶微图案的光刻平版印刷[J]. 高等学校化学学报, 2016, 37(4): 715-722. |
Zheng B Y, Ji F Y, Hou Z S, et al. Preparation of biocompatible protein-hydrogel-based micro-patterns via UV lithography[J]. Chemical Journal of Chinese Universities, 2016, 37(4): 715-722. | |
4 | 周飞飞. 光响应型组织黏附性水凝胶用于软组织修复再生的研究[D]. 杭州: 浙江大学, 2020. |
Zhou F F. The photo-responsive and tissue adhesive hydrogel for soft tissues repair and regeneration[D]. Hangzhou: Zhejiang University, 2020. | |
5 | 羊剑秋, 高以红, 朱红柳. 重组人源Ⅲ型胶原蛋白功能凝胶对皮肤创口愈合的疗效及其机制[J]. 山东医药, 2021, 61(34): 80-83. |
Yang J Q, Gao Y H, Zhu H L. Therapeutic effect and mechanism of recombinant human type Ⅲ collagen functional gel on skin wound healing[J]. Shandong Medical Journal, 2021, 61(34): 80-83. | |
6 | 姜明. 具有抗菌功能的水凝胶敷料用于烧伤创面修复的研究[D]. 广州: 暨南大学, 2019. |
Jiang M. Study of antibacterial hydrogel dressing applied to repair burn wounds[D]. Guangzhou: Jinan University, 2019. | |
7 | Islam M, Vinogradov E, Islam Mominul, et al. Double-delivery of bioactive agents by an ultrahigh water-absorbing antibacterial hydrogel from konjac glucomannan for wound healing applications[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28011-28023. |
8 | Xie X, Lei H, Fan D. Antibacterial hydrogel with pH-responsive microcarriers of slow-release VEGF for bacterial infected wounds repair[J]. Journal of Materials Science & Technology, 2023, 13: 198-212. |
9 | Wahid F, Hu X H, Chu L Q, et al. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties[J]. International Journal of Biological Macromolecules, 2019, 122: 380-387. |
10 | 韩守臣. 刺激响应性高分子的合成及药物控制释放研究[D]. 合肥: 中国科学技术大学, 2009. |
Han S C. The synthesis of two responsive polymers and their application in drug release[D]. Hefei: University of Science and Technology of China, 2009. | |
11 | Kasoju N, Bora U. Recent advances in stimulus-responsive chitosan-based hydrogels for controlled drug delivery[J]. Advanced Drug Delivery Reviews, 2021, 64(11): 1066-1083. |
12 | Martín A, Pulido J C, González J C, et al. A framework for user adaptation and profiling for social robotics in rehabilitation[J]. Sensors, 2020, 20(17): 4792. |
13 | Bansal M, Raos B, Aqrawe Z, et al. An interpenetrating and patternable conducting polymer hydrogel for electrically stimulated release of glutamate[J]. Acta Biomaterialia, 2022, 137: 124-135. |
14 | Maxwell X, Masuko S, Grillo A, et al. Electric-field-induced release from and swelling of an acrylamide-based hydrogel[J]. Macromolecules, 2020, 53(17): 7267-7277. |
15 | Prasad Y D, Botta S, Sangwan V K, et al. Electrically-triggered on-demand release of therapeutic antibodies from a hydrogel-based drug delivery system[J]. Journal of Controlled Release, 2021, 329: 963-973. |
16 | 郝丽, 黄丹丹, 关梅, 等. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829. |
Hao L, Huang D D, Guan M, et al. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829. | |
17 | 王志利, 丁丕, 高田, 等. 水凝胶纳米纤维复合基底捕获循环肿瘤细胞的研究[J]. 分析化学, 2019, 47(8): 1162-1169. |
Wang Z L, Ding P, Gao T, et al. Capture of circulating tumor cells by hydrogel-nanofiber substrate[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1162-1169. | |
18 | 曲柯宇, 赵晓涵, 周迅, 等. 一种氧化海藻酸钠-聚丙烯酰胺水凝胶及其应用: 113150213A[P]. 2021-07-23. |
Qu K Y, Zhao X H, Zhou X, et al. Oxidized sodium alginate-polyacrylamide hydrogel and its application: 113150213A[P]. 2021-07-23. | |
19 | 叶锦涛. 导电聚吡咯的制备及在执行器中的应用研究[D]. 沈阳: 沈阳理工大学, 2021. |
Ye J T. Research of preparation of conductive polypyrrole and its application in actuators[D]. Shenyang: Shenyang Ligong University, 2021. | |
20 | 布颖. 促周围神经再生的导电载药水凝胶研究[D]. 武汉: 武汉理工大学, 2018. |
Bu Y. Study on conductive drug loaded hydrogel for peripheral nerve regeneration[D]. Wuhan: Wuhan University of Technology, 2018. | |
21 | 吕鹏程. 电场调控构建壳聚糖载药导电敷料及其生物性能研究[D]. 上海: 东华大学, 2021. |
Lv P C. Construction of chitosan drug-loaded conductive dressing via electric field and its biological properties[D]. Shanghai: Donghua University, 2021. | |
22 | Yang N, Wang Y, Zhang Q, et al. γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release[J]. Polymer Degradation and Stability, 2017, 144: 53-61. |
23 | Martin N, Youssef G. Dynamic properties of hydrogels and fiber-reinforced hydrogels[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 194-200. |
24 | Gunes O C, Ziylan Albayrak A. Antibacterial polypeptide nisin containing cotton modified hydrogel composite wound dressings[J]. Polymer Bulletin, 2021, 78(11): 6409-6428. |
25 | Huang J H, Lei X L, Huang Z W, et al. Bioprinted gelatin-recombinant type Ⅲ collagen hydrogel promotes wound healing[J]. International Journal of Bioprinting, 2022, 8(2): 517. |
26 | Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications[J]. Polymers, 2020, 12(11): 2702. |
27 | 杨琴, 秦传鉴, 李明梓, 等. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
Yang Q, Qin C J, Li M Z, et al. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707. | |
28 | Pardo A, Gómez-Florit M, Barbosa S, et al. Magnetic nanocomposite hydrogels for tissue engineering: design concepts and remote actuation strategies to control cell fate[J]. ACS Nano, 2021, 15(1): 175-209. |
29 | Jin J, Chen Z L, Xiang Y, et al. Development of a PHMB hydrogel-modified wound scaffold dressing with antibacterial activity[J]. Wound Repair and Regeneration, 2020, 28(4): 480-492. |
30 | Konieczynska M D, Villa-Camacho J C, Ghobril C, et al. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction[J]. Angewandte Chemie International Edition, 2016, 55(34): 9984-9987. |
31 | Qu J, Zhao X, Liang Y P, et al. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing[J]. Chemical Engineering Journal, 2019, 362: 548-560. |
32 | 文国宇, 汪伟, 谢锐, 等. 水凝胶材料在金属离子富集与分离领域的研究进展[J]. 化工学报, 2020, 71(9): 3866-3875. |
Wen G Y, Wang W, Xie R, et al. Recent progress of hydrogel materials in the field of enrichment and separation of metal ions[J]. CIESC Journal, 2020, 71(9): 3866-3875. | |
33 | Zhang R, Yu B, Tian Y C, et al. Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare[J]. Applied Materials Today, 2022, 26: 101396. |
34 | Wang Y L, Zhang Y B, Lin Z S, et al. A green method of preparing a natural and degradable wound dressing containing aloe vera as an active ingredient[J]. Composites Part B: Engineering, 2021, 222: 109047. |
35 | Shang K, Tao L X, Jiang S Y, et al. Highly flexible hydrogel dressing with efficient antibacterial, antioxidative, and wound healing performances[J]. Biomaterials Science, 2022, 10(5): 1373-1383. |
36 | Kang X C, Li X J, Liu C, et al. A shape-persistent plasticine-like conductive hydrogel with self-healing properties for peripheral nerve regeneration[J]. Journal of Materials Science & Technology, 2023, 142: 134-143. |
37 | Feng L, Chen Q, Cheng H T, et al. Dually-thermoresponsive hydrogel with shape adaptability and synergetic bacterial elimination in the full course of wound healing[J]. Advanced Healthcare Materials, 2022, 11(18): e2201049. |
[1] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
[2] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[3] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[4] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[5] | 杨玉维, 李敏, 要智颖, 孙沁林, 刘洋, 葛丹, 孙冰冰. 类器官芯片在纳米药物递送系统研究中的应用及前景[J]. 化工学报, 2024, 75(4): 1209-1221. |
[6] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[7] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[10] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
[13] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[14] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[15] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||