化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4333-4347.DOI: 10.11949/0438-1157.20240647
刘根(), 孙仲顺, 张博, 张榕江, 吴志强, 杨伯伦(
)
收稿日期:
2024-06-10
修回日期:
2024-09-18
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
杨伯伦
作者简介:
刘根(1997-), 男,博士研究生,Gen626@stu.xjtu.edu.cn
基金资助:
Gen LIU(), Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG(
)
Received:
2024-06-10
Revised:
2024-09-18
Online:
2024-11-25
Published:
2024-12-26
Contact:
Bolun YANG
摘要:
针对生物质气化制备绿氢过程中气化效率低、氢气选择性差的挑战,提出了一种热解串联挥发分化学链重整制氢的解耦工艺。在对上述过程理论分析时发现,热解挥发分的产量和组成与生物质性质和热解操作条件之间的复杂关系难以通过传统模型化方法被准确关联,从而制约了上述工艺的精确分析调控。因此本文基于机器学习方法建立了生物质快速热解过程的产物分布预测的神经网络模型,并结合粒子群优化算法确定最佳热解条件,使热解挥发分的氢原子比和高位热值最大化,氧原子比最小化。随后,基于流程模拟对挥发分化学链重整制氢工艺进行了分析和优化。研究结果显示,所建立的神经网络模型能够准确预测热解三相产物的产率、热解气的详细组成、热解油的元素分布及高位热值等。在上述输出参数的综合测试集中,模型的平均决定系数为0.821,平均均方根误差为2.00。优化后,草本生物质(小麦秸秆、玉米秸秆)和木本生物质(榕树、松木)的热解挥发分产率为64.49%~78.62%,氢原子占比在3.77%~4.39%之间。在重整温度700 oC,蒸汽/生物质质量比0.71~0.88的优化工况下,小麦秸秆的氢气产量和CO2负排放能力最高,分别为0.60 m3/kg与-1.74 kg /m3。采用生物质挥发分化学链重整制氢工艺,四种生物质的氢气产量相较常规气化分别增加了61%、35%、16%和34%。研究结果为生物质制备绿氢提供了有效的基础支撑。
中图分类号:
刘根, 孙仲顺, 张博, 张榕江, 吴志强, 杨伯伦. 机器学习驱动的生物质热解模型建立及挥发分化学链重整制氢工艺优化[J]. 化工学报, 2024, 75(11): 4333-4347.
Gen LIU, Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG. Establishment of machine learning-driven biomass pyrolysis model and optimization of volatiles chemical looping reforming hydrogen production process[J]. CIESC Journal, 2024, 75(11): 4333-4347.
输入变量 | 单位 | ||
---|---|---|---|
原料性质 | 工业 分析① | 灰分(Ash) | %(质量) |
挥发分(V) | %(质量) | ||
固定碳(FC) | %(质量) | ||
元素 分析① | 碳(C) | %(质量) | |
氢(H) | %(质量) | ||
氧(O) | %(质量) | ||
氮(N) | %(质量) | ||
组成 分析 | 纤维素(Cel) | %(质量) | |
半纤维素(Hem) | %(质量) | ||
木质素(Lig) | %(质量) | ||
热解操作条件 | 生物质粒径(PS) | μm | |
热解温度(T) | ℃ | ||
进料速度(F) | kg/h | ||
载气流量(G) | m³/h |
表1 输入变量与输出变量
Table 1 Input variables and output variables
输入变量 | 单位 | ||
---|---|---|---|
原料性质 | 工业 分析① | 灰分(Ash) | %(质量) |
挥发分(V) | %(质量) | ||
固定碳(FC) | %(质量) | ||
元素 分析① | 碳(C) | %(质量) | |
氢(H) | %(质量) | ||
氧(O) | %(质量) | ||
氮(N) | %(质量) | ||
组成 分析 | 纤维素(Cel) | %(质量) | |
半纤维素(Hem) | %(质量) | ||
木质素(Lig) | %(质量) | ||
热解操作条件 | 生物质粒径(PS) | μm | |
热解温度(T) | ℃ | ||
进料速度(F) | kg/h | ||
载气流量(G) | m³/h |
单元 | 关键设备参数 | 模拟方法 |
---|---|---|
重整反应器 | 流化床, 1 atm, 700~850℃ | RGibbs block |
一级再生反应器 | 流化床, 1 atm, 绝热运行 | RCSTR block |
二级再生反应器 | 流化床, 1 atm, 950℃ | RStoic block |
MEA CO2 捕集系统 | CO2 捕集率:90%, 热量需求: 3538 kJ/kg | Sep block |
氢气变压吸附分离系统 | H2分离效率:85%, H2纯度:99.99% (mol) | Sep block |
表2 工艺装置的模拟方法和运行参数
Table 2 Simulation methods and operational parameters for process units
单元 | 关键设备参数 | 模拟方法 |
---|---|---|
重整反应器 | 流化床, 1 atm, 700~850℃ | RGibbs block |
一级再生反应器 | 流化床, 1 atm, 绝热运行 | RCSTR block |
二级再生反应器 | 流化床, 1 atm, 950℃ | RStoic block |
MEA CO2 捕集系统 | CO2 捕集率:90%, 热量需求: 3538 kJ/kg | Sep block |
氢气变压吸附分离系统 | H2分离效率:85%, H2纯度:99.99% (mol) | Sep block |
原料 | 元素分析①/%(质量) | 工业分析①/%(质量) | 组成分析/%(质量) | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | Ash | V | FC | Cel | Hem | Lig | ||
小麦秸秆 | 41.03 | 6.02 | 0.14 | 51.38 | 1.38 | 83.30 | 15.32 | 34.60 | 29.30 | 21.30 | [ |
玉米秸秆 | 43.56 | 5.85 | 1.18 | 45.99 | 7.13 | 75.59 | 17.28 | 33.46 | 23.77 | 26.19 | [ |
榕树 | 44.40 | 7.21 | 0.91 | 47.48 | 10.90 | 85.13 | 3.97 | 31.01 | 15.69 | 24.92 | [ |
松木 | 48.22 | 6.30 | 0.14 | 44.45 | 1.59 | 87.50 | 10.91 | 39.00 | 34.00 | 12.00 | [ |
表3 不同生物质元素分析、工业分析及组成分析数据
Table 3 Elemental analysis, industrial analysis, compositional analysis data for different biomasses
原料 | 元素分析①/%(质量) | 工业分析①/%(质量) | 组成分析/%(质量) | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | Ash | V | FC | Cel | Hem | Lig | ||
小麦秸秆 | 41.03 | 6.02 | 0.14 | 51.38 | 1.38 | 83.30 | 15.32 | 34.60 | 29.30 | 21.30 | [ |
玉米秸秆 | 43.56 | 5.85 | 1.18 | 45.99 | 7.13 | 75.59 | 17.28 | 33.46 | 23.77 | 26.19 | [ |
榕树 | 44.40 | 7.21 | 0.91 | 47.48 | 10.90 | 85.13 | 3.97 | 31.01 | 15.69 | 24.92 | [ |
松木 | 48.22 | 6.30 | 0.14 | 44.45 | 1.59 | 87.50 | 10.91 | 39.00 | 34.00 | 12.00 | [ |
原料 | 热解条件 | |||
---|---|---|---|---|
生物质 粒径/μm | 热解 温度/oC | 进料速度/(kg/h) | 载气流量/(m³/h) | |
小麦秸秆 | 232.67 | 594.87 | 5.30 | 0.06 |
玉米秸秆 | 8060.52 | 611.00 | 5.30 | 0.06 |
榕树 | 10000.00 | 277.00 | 1.15 | 13.00 |
松木 | 2036.94 | 611.00 | 5.30 | 0.06 |
表4 不同生物质热解条件优化结果
Table 4 Optimization results of different biomass pyrolysis conditions
原料 | 热解条件 | |||
---|---|---|---|---|
生物质 粒径/μm | 热解 温度/oC | 进料速度/(kg/h) | 载气流量/(m³/h) | |
小麦秸秆 | 232.67 | 594.87 | 5.30 | 0.06 |
玉米秸秆 | 8060.52 | 611.00 | 5.30 | 0.06 |
榕树 | 10000.00 | 277.00 | 1.15 | 13.00 |
松木 | 2036.94 | 611.00 | 5.30 | 0.06 |
原料 | Char/%(质量) | Oil/%(质量) | Gas/%(质量) | HHV/(MJ/kg) |
---|---|---|---|---|
小麦秸秆 | 35.49 | 48.62 | 15.87 | 27.34 |
玉米秸秆 | 26.19 | 42.38 | 31.48 | 29.32 |
榕树 | 21.33 | 58.23 | 20.39 | 26.65 |
松木 | 33.89 | 29.35 | 36.83 | 25.58 |
原料 | COil/%(质量) | HOil/%(质量) | NOil/%(质量) | OOil/%(质量) |
小麦秸秆 | 58.34 | 6.31 | 0.41 | 35.19 |
玉米秸秆 | 64.45 | 6.85 | 1.12 | 27.63 |
榕树 | 61.53 | 7.08 | 1.07 | 30.24 |
松木 | 64.66 | 6.46 | 0.69 | 29.46 |
原料 | CO/%(质量) | CO2/%(质量) | CH4/%(质量) | H2/%(质量) |
小麦秸秆 | 53.88 | 34.74 | 9.19 | 2.12 |
玉米秸秆 | 41.84 | 48.41 | 7.91 | 1.82 |
榕树 | 29.11 | 67.58 | 2.97 | 0.47 |
松木 | 63.55 | 17.99 | 13.74 | 3.22 |
表5 不同生物质最优热解条件下产物性质预测
Table 5 Prediction of product properties under optimal pyrolysis conditions
原料 | Char/%(质量) | Oil/%(质量) | Gas/%(质量) | HHV/(MJ/kg) |
---|---|---|---|---|
小麦秸秆 | 35.49 | 48.62 | 15.87 | 27.34 |
玉米秸秆 | 26.19 | 42.38 | 31.48 | 29.32 |
榕树 | 21.33 | 58.23 | 20.39 | 26.65 |
松木 | 33.89 | 29.35 | 36.83 | 25.58 |
原料 | COil/%(质量) | HOil/%(质量) | NOil/%(质量) | OOil/%(质量) |
小麦秸秆 | 58.34 | 6.31 | 0.41 | 35.19 |
玉米秸秆 | 64.45 | 6.85 | 1.12 | 27.63 |
榕树 | 61.53 | 7.08 | 1.07 | 30.24 |
松木 | 64.66 | 6.46 | 0.69 | 29.46 |
原料 | CO/%(质量) | CO2/%(质量) | CH4/%(质量) | H2/%(质量) |
小麦秸秆 | 53.88 | 34.74 | 9.19 | 2.12 |
玉米秸秆 | 41.84 | 48.41 | 7.91 | 1.82 |
榕树 | 29.11 | 67.58 | 2.97 | 0.47 |
松木 | 63.55 | 17.99 | 13.74 | 3.22 |
项目 | 小麦秸秆 | 玉米秸秆 | 榕树 | 松木 |
---|---|---|---|---|
关键工艺参数 | ||||
蒸汽/生物质质量比 | 0.88 | 0.71 | 0.83 | 0.74 |
空气/生物质质量比 | 1.76 | 1.31 | 1.06 | 1.63 |
载氧体循环速率/(kg/h) | 4691.00 | 3540.78 | 2878.40 | 4403.42 |
CO2气速/(kg/h) | 1369.09 | 1216.05 | 1326.29 | 1702.45 |
反应器运行温度/oC | ||||
重整反应器 | 700.00 | 700.00 | 700.00 | 700.00 |
一级再生反应器 | 689.04 | 692.46 | 688.22 | 690.69 |
二级再生反应器 | 950.00 | 950.00 | 950.00 | 950.00 |
产品性质 | ||||
纯H2流量 | ||||
质量流量/(kg/h) | 31.73 | 29.46 | 31.22 | 27.60 |
摩尔流量/(kmol/h) | 63.96 | 59.39 | 62.94 | 55.64 |
合成气组成/%(mol) | ||||
H2 | 0.56 | 0.58 | 0.60 | 0.53 |
CO | 0.32 | 0.31 | 0.28 | 0.33 |
CH4 | <0.01 | <0.01 | <0.01 | <0.01 |
CO2 | 0.12 | 0.11 | 0.12 | 0.14 |
系统性能 | ||||
氢气产量/(m3/kg) | 0.60 | 0.56 | 0.59 | 0.53 |
能量转化效率/% | 89.54 | 73.90 | 66.31 | 63.04 |
净CO2排放量/(kg/m3) | -1.74 | -1.27 | -1.27 | -1.42 |
表6 不同生物质热解化学链重整产氢性能
Table 6 Prediction of product properties under optimal pyrolysis conditions
项目 | 小麦秸秆 | 玉米秸秆 | 榕树 | 松木 |
---|---|---|---|---|
关键工艺参数 | ||||
蒸汽/生物质质量比 | 0.88 | 0.71 | 0.83 | 0.74 |
空气/生物质质量比 | 1.76 | 1.31 | 1.06 | 1.63 |
载氧体循环速率/(kg/h) | 4691.00 | 3540.78 | 2878.40 | 4403.42 |
CO2气速/(kg/h) | 1369.09 | 1216.05 | 1326.29 | 1702.45 |
反应器运行温度/oC | ||||
重整反应器 | 700.00 | 700.00 | 700.00 | 700.00 |
一级再生反应器 | 689.04 | 692.46 | 688.22 | 690.69 |
二级再生反应器 | 950.00 | 950.00 | 950.00 | 950.00 |
产品性质 | ||||
纯H2流量 | ||||
质量流量/(kg/h) | 31.73 | 29.46 | 31.22 | 27.60 |
摩尔流量/(kmol/h) | 63.96 | 59.39 | 62.94 | 55.64 |
合成气组成/%(mol) | ||||
H2 | 0.56 | 0.58 | 0.60 | 0.53 |
CO | 0.32 | 0.31 | 0.28 | 0.33 |
CH4 | <0.01 | <0.01 | <0.01 | <0.01 |
CO2 | 0.12 | 0.11 | 0.12 | 0.14 |
系统性能 | ||||
氢气产量/(m3/kg) | 0.60 | 0.56 | 0.59 | 0.53 |
能量转化效率/% | 89.54 | 73.90 | 66.31 | 63.04 |
净CO2排放量/(kg/m3) | -1.74 | -1.27 | -1.27 | -1.42 |
1 | Osman A I, Mehta N, Elgarahy A M, et al. Hydrogen production, storage, utilisation and environmental impacts: a review[J]. Environmental Chemistry Letters, 2022, 20(1): 153-188. |
2 | Kuo P C, Chen J R, Wu W, et al. Hydrogen production from biomass using iron-based chemical looping technology: validation, optimization, and efficiency[J]. Chemical Engineering Journal, 2018, 337: 405-415. |
3 | 张榕江, 张博, 刘根, 等. 化学链制化学品工艺及循环材料研究进展[J]. 化工学报, 2023, 74(10): 3979-3994. |
Zhang R J, Zhang B, Liu G, et al. Progress in chemical looping process for chemical production and looping materials research[J]. CIESC Journal, 2023, 74(10): 3979-3994. | |
4 | Waldheim L, Nilsson T. Heating value of gases from biomass gasification[R]. Report prepared for: IEA bioenergy agreement, Task 20-thermal gasification of biomass, 2001. |
5 | Zhang B, Li Y C, Yang B L, et al. Controlling the reaction microenvironments through an embedding strategy to strengthen the chemical looping reforming of methane based on decoupling process[J]. Chemical Engineering Journal, 2022, 446: 137061. |
6 | Zhang B, Sun Z S, Li Y C, et al. Chemical looping reforming characteristics of methane and toluene from biomass pyrolysis volatiles based on decoupling strategy: embedding NiFe2O4 in SBA-15 as an oxygen carrier[J]. Chemical Engineering Journal, 2023, 466: 143228. |
7 | Liu G, Zhang R J, Sun Z S, et al. Carbon-negative syngas production: a comprehensive assessment of biomass pyrolysis coupling chemical looping reforming[J]. AIChE Journal, 2023, 69(12): e18254. |
8 | Zhang R J, Liu G, Huo C B, et al. Tailoring catalytic and oxygen release capability in LaFe1- x Ni x O3 to intensify chemical looping reactions at medium temperatures[J]. ACS Catalysis, 2024, 14(10): 7771-7787. |
9 | Liu G, Zhang R J, Zhang B, et al. Performance evaluation of torrefaction coupled with a chemical looping gasification process under autothermal conditions: flexible syngas production from biomass[J]. Energy & Fuels, 2023, 37(1): 424-438. |
10 | Palma C F. Modelling of tar formation and evolution for biomass gasification: a review[J]. Applied Energy, 2013, 111: 129-141. |
11 | Sharma A, Pareek V, Zhang D K. Biomass pyrolysis—a review of modelling, process parameters and catalytic studies[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1081-1096. |
12 | Li P, Shi X P, Wang X H, et al. Bio-oil from biomass fast pyrolysis: yields, related properties and energy consumption analysis of the pyrolysis system[J]. Journal of Cleaner Production, 2021, 328: 129613. |
13 | Hameed S, Sharma A, Pareek V, et al. A review on biomass pyrolysis models: kinetic, network and mechanistic models[J]. Biomass and Bioenergy, 2019, 123: 104-122. |
14 | Leng E W, He B, Chen J W, et al. Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning[J]. Energy, 2021, 236: 121401. |
15 | Chong J W, Thangalazhy-Gopakumar S, Tan R R, et al. Estimation of fast pyrolysis bio-oil properties from feedstock characteristics using rough-set-based machine learning[J]. International Journal of Energy Research, 2022, 46(13): 19159-19176. |
16 | Ali N, Saleem M, Shahzad K, et al. Bio-oil production from fast pyrolysis of cotton stalk in fluidized bed reactor[J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3019-3027. |
17 | Jung S H, Kang B S, Kim J S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 240-247. |
18 | Yang S Y, Wu C Y, Chen K H. The physical characteristics of bio-oil from fast pyrolysis of rice straw[J]. Advanced Materials Research, 2011, 328: 881-886. |
19 | Yang S I, Wu M S, Wu C Y. Application of biomass fast pyrolysis (part Ⅰ): Pyrolysis characteristics and products[J]. Energy, 2014, 66: 162-171. |
20 | Duman G, Okutucu C, Ucar S, et al. The slow and fast pyrolysis of cherry seed[J]. Bioresource Technology, 2011, 102(2): 1869-1878. |
21 | Kim S J, Jung S H, Kim J S. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds[J]. Bioresource Technology, 2010, 101(23): 9294-9300. |
22 | Sulaiman F, Abdullah N. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches[J]. Energy, 2011, 36(5): 2352-2359. |
23 | Heidari A, Stahl R, Younesi H, et al. Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2594-2602. |
24 | Koo W M, Jung S H, Kim J S. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor[J]. Energy, 2014, 68: 555-561. |
25 | Montoya J I, Valdés C, Chejne F, et al. Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: an experimental study[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 379-387. |
26 | Ali N, Saleem M, Shahzad K, et al. Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor[J]. Polish Journal of Chemical Technology, 2016, 18(3): 88-96. |
27 | Salehi E, Abedi J, Harding T. Bio-oil from sawdust: effect of operating parameters on the yield and quality of pyrolysis products[J]. Energy & Fuels, 2011, 25(9): 4145-4154. |
28 | Kang B S, Lee K H, Park H J, et al. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: influence of a char separation system and reaction conditions on the production of bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1/2): 32-37. |
29 | Pattiya A, Suttibak S. Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 227-235. |
30 | Park H J, Park Y K, Kim J S. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis[J]. Fuel Processing Technology, 2008, 89(8): 797-802. |
31 | Park H J, Park Y K, Dong J I, et al. Pyrolysis characteristics of oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system[J]. Fuel Processing Technology, 2009, 90(2): 186-195. |
32 | Agblevor F A, Besler S, Wiselogel A E. Fast pyrolysis of stored biomass feedstocks[J]. Energy & Fuels, 1995, 9(4): 635-640. |
33 | Fahmi R, Bridgwater A V, Donnison I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability[J]. Fuel, 2008, 87(7): 1230-1240. |
34 | Lee K H, Kang B S, Park Y K, et al. Influence of reaction temperature, pretreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed[J]. Energy & Fuels, 2005, 19(5): 2179-2184. |
35 | Eom I Y, Kim J Y, Lee S M, et al. Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach[J]. Bioresource Technology, 2013, 128: 664-672. |
36 | Kim K H, Bai X L, Rover M, et al. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor[J]. Fuel, 2014, 124: 49-56. |
37 | Mullen C A, Boateng A A, Goldberg N M, et al. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis[J]. Biomass and Bioenergy, 2010, 34(1): 67-74. |
38 | Bok J P, Choi H S, Choi Y S, et al. Fast pyrolysis of coffee grounds: characteristics of product yields and biocrude oil quality[J]. Energy, 2012, 47(1): 17-24. |
39 | Kim J Y, Oh S, Hwang H, et al. Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis[J]. Energy, 2014, 76: 284-291. |
40 | Bok J P, Choi H S, Choi J W, et al. Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: characteristics of product yields and biocrude oil quality[J]. Energy, 2013, 60: 44-52. |
41 | Park J W, Heo J, Ly H V, et al. Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor[J]. Energy, 2019, 179: 517-527. |
42 | Ly H V, Lim D H, Sim J W, et al. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst[J]. Energy, 2018, 162: 564-575. |
43 | Salehi E, Abedi J, Harding T G, et al. Bio-oil from sawdust: design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant[J]. Energy & Fuels, 2013, 27(6): 3332-3340. |
44 | 王茂先, 孙启典, 付哲, 等. 分子水平动力学模型和机器学习方法相结合研究废弃塑料热解[J]. 化工学报, 2024, 75(11): 4320-4332. |
Wang M X, Sun Q D, Fu Z, et al. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning[J]. CIESC Journal, 2024, 75(11): 4320-4332. | |
45 | Maurer A, Pontil M, Romera-Paredes B. The benefit of multitask representation learning[J]. Journal of Machine Learning Research, 2016, 17(81): 1-32. |
46 | 黄勇, 王宁波, 刘巧霞, 等. 热解条件对西湾煤与秸秆流化床加压共热解的影响[J]. 煤炭转化, 2022, 45(1): 11-19. |
Huang Y, Wang N B, Liu Q X, et al. Effects of pyrolysis conditions on pressurized co-pyrolysis of xiwan coal and wheat straw in fluidized bed[J]. Coal Conversion, 2022, 45(1): 11-19. | |
47 | Chireshe F, Collard F X, Görgens J F. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln reactor[J]. Journal of Cleaner Production, 2020, 260: 120987. |
48 | Abhijeet P, Swagathnath G, Rangabhashiyam S, et al. Prediction of pyrolytic product composition and yield for various grass biomass feedstocks[J]. Biomass Conversion and Biorefinery, 2020, 10(3): 663-674. |
49 | Tsekos C, Tandurella S, Jong W D. Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105180. |
50 | Naik S, Goud V V, Rout P K, et al. Characterization of Canadian biomass for alternative renewable biofuel[J]. Renewable Energy, 2010, 35(8): 1624-1631. |
51 | Lu W, Ronghou L, Chen S, et al. Classification and comparison of physical and chemical properties of corn stalk from three regions in China[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(6): 98-106. |
52 | Pérez-Arévalo J J, Velázquez-Martí B. Evaluation of pruning residues of Ficus benjamina as a primary biofuel material[J]. Biomass and Bioenergy, 2018, 108: 217-223. |
53 | Hu J J, Li C, Guo Q H, et al. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresource Technology, 2018, 263: 273-279. |
54 | Zhao Z G, Kong W G, Wu S, et al. High quality syngas production from catalytic steam gasification of biomass with calcium-rich construction waste[J]. Journal of the Energy Institute, 2023, 111: 101433. |
55 | Kumar P, Subbarao P M V, Kala L D, et al. Experimental assessment of producer gas generation using agricultural and forestry residues in a fixed bed downdraft gasifier[J]. Chemical Engineering Journal Advances, 2023, 13: 100431. |
56 | Song Y H, Tian Y, Zhou X, et al. Simulation of air-steam gasification of pine sawdust in an updraft gasification system for production of hydrogen-rich producer gas[J]. Energy, 2021, 226: 120380. |
[1] | 蒲黎明, 汪贵, 郑春来, 王科, 向腾龙, 王治红. 混合制冷级联天然气液化工艺优化及分析[J]. 化工学报, 2024, 75(S1): 267-275. |
[2] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[3] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[4] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[5] | 赵帅琪, 张瑞, 黄瀚, 赵昆鹏, 白博峰. 水气转化对超临界水煤气化的抑制特性[J]. 化工学报, 2024, 75(8): 2960-2969. |
[6] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[7] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[8] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
[9] | 许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911. |
[10] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
[11] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[12] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[13] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[14] | 陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923. |
[15] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||