化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1951-1965.DOI: 10.11949/0438-1157.20240075
收稿日期:
2024-01-16
修回日期:
2024-02-19
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
周利
作者简介:
黄志鸿(1999—),男,硕士研究生,rick_zhihong@163.com
基金资助:
Zhihong HUANG(), Li ZHOU(
), Shiyang CHAI, Xu JI
Received:
2024-01-16
Revised:
2024-02-19
Online:
2024-05-25
Published:
2024-06-25
Contact:
Li ZHOU
摘要:
当前环境法规日益严格,炼厂为提高产品质量需要深化加氢处理深度,但会显著增加氢气消耗。此外,当加氢装置处理量调整以及原油切换引起杂质含量波动时,加氢装置工况将会产生偏移,若不及时对新工况下的氢气使用进行优化,可能导致产品质量下降或造成氢气浪费。针对于此,提出耦合加氢装置优化的多周期氢网络集成方法。该方法第一阶段通过使用加氢精制装置操作参数优化模型获得不同场景下各装置的最佳操作参数,第二阶段综合多个优化后的操作场景集成氢网络。通过实例计算表明,基于所提出的优化方法能获得满足不同场景下的加氢精制装置的加氢需求、以更低的成本获得合格产品的氢气网络运行策略。
中图分类号:
黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965.
Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network[J]. CIESC Journal, 2024, 75(5): 1951-1965.
周期 | 入口进料流量/(t·h-1) | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 150.00 | 373.81 | 216.67 | 50.00 |
3月 | 134.25 | 392.84 | 243.92 | 38.91 |
5月 | 178.34 | 328.95 | 202.29 | 44.58 |
7月 | 163.93 | 319.92 | 189.47 | 46.32 |
9月 | 126.39 | 448.39 | 239.32 | 48.25 |
11月 | 159.28 | 402.58 | 227.34 | 43.29 |
表1 HDT装置的入口进料流量
Table 1 Feed flow data at the inlet of hydrotreating units
周期 | 入口进料流量/(t·h-1) | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 150.00 | 373.81 | 216.67 | 50.00 |
3月 | 134.25 | 392.84 | 243.92 | 38.91 |
5月 | 178.34 | 328.95 | 202.29 | 44.58 |
7月 | 163.93 | 319.92 | 189.47 | 46.32 |
9月 | 126.39 | 448.39 | 239.32 | 48.25 |
11月 | 159.28 | 402.58 | 227.34 | 43.29 |
周期 | 硫含量/(mg·kg-1) | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 4800 | 3011 | 390 | 600 |
3月 | 6243 | 3854 | 491 | 792 |
5月 | 4176 | 2620 | 339 | 522 |
7月 | 5616 | 3704 | 476 | 717 |
9月 | 3792 | 2379 | 308 | 474 |
11月 | 5997 | 3764 | 488 | 752 |
表2 HDT装置入口的进料硫含量
Table 2 The inlet feed sulfur content data of the hydrotreating units
周期 | 硫含量/(mg·kg-1) | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 4800 | 3011 | 390 | 600 |
3月 | 6243 | 3854 | 491 | 792 |
5月 | 4176 | 2620 | 339 | 522 |
7月 | 5616 | 3704 | 476 | 717 |
9月 | 3792 | 2379 | 308 | 474 |
11月 | 5997 | 3764 | 488 | 752 |
周期 | 空速/h-1 | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 1.920 | 2.000 | 3.000 | 2.250 |
3月 | 1.718 | 2.102 | 3.377 | 1.751 |
5月 | 2.283 | 1.760 | 2.801 | 2.006 |
7月 | 2.098 | 1.712 | 2.623 | 2.084 |
9月 | 1.618 | 2.399 | 3.314 | 2.171 |
11月 | 2.039 | 2.154 | 3.148 | 1.948 |
表3 HDT装置的空速
Table 3 LHSV of hydrotreating units
周期 | 空速/h-1 | |||
---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT | |
1月 | 1.920 | 2.000 | 3.000 | 2.250 |
3月 | 1.718 | 2.102 | 3.377 | 1.751 |
5月 | 2.283 | 1.760 | 2.801 | 2.006 |
7月 | 2.098 | 1.712 | 2.623 | 2.084 |
9月 | 1.618 | 2.399 | 3.314 | 2.171 |
11月 | 2.039 | 2.154 | 3.148 | 1.948 |
操作条件和约束 | DHT-1 | DHT-2 | GHT | KHT |
---|---|---|---|---|
反应温度/K | 633.0 | 648.0 | 513.0 | 553.0 |
反应压力/bar | 67.2 | 70.0 | 27.0 | 38.3 |
反应空速/h-1 | 1.920 | 2.000 | 3.000 | 2.250 |
气体硫含量限制/% | 0.10 | 0.10 | 0.10 | 0.10 |
最低氢气纯度/% | 90 | 90 | 86 | 88 |
产品硫含量 (不大于)/(mg/kg) | 10 | 10 | 10 | 400 |
表4 HDT装置操作条件和入口流股浓度约束
Table 4 Operating conditions and inlet stream concentration constrains for the hydrotreating units
操作条件和约束 | DHT-1 | DHT-2 | GHT | KHT |
---|---|---|---|---|
反应温度/K | 633.0 | 648.0 | 513.0 | 553.0 |
反应压力/bar | 67.2 | 70.0 | 27.0 | 38.3 |
反应空速/h-1 | 1.920 | 2.000 | 3.000 | 2.250 |
气体硫含量限制/% | 0.10 | 0.10 | 0.10 | 0.10 |
最低氢气纯度/% | 90 | 90 | 86 | 88 |
产品硫含量 (不大于)/(mg/kg) | 10 | 10 | 10 | 400 |
周期 | 模型计算耗氢/ (kmol/h) | 实际耗氢/ (kmol/h) | 计算偏差/% |
---|---|---|---|
1月 | 855 | 913 | -6 |
3月 | 978 | 1026 | -5 |
5月 | 623 | 672 | -7 |
7月 | 749 | 762 | -2 |
9月 | 1024 | 1097 | -7 |
11月 | 787 | 831 | -5 |
表5 DHT-1模型计算耗氢与实际耗氢对比
Table 5 Calculation and actual hydrogen consumption of DHT-1
周期 | 模型计算耗氢/ (kmol/h) | 实际耗氢/ (kmol/h) | 计算偏差/% |
---|---|---|---|
1月 | 855 | 913 | -6 |
3月 | 978 | 1026 | -5 |
5月 | 623 | 672 | -7 |
7月 | 749 | 762 | -2 |
9月 | 1024 | 1097 | -7 |
11月 | 787 | 831 | -5 |
图5 LHSV变化对HDT耗氢的影响趋势(RH、Sprod、RH2S、RNH3、Rhdis和RLCH分别代表装置总耗氢、产品硫含量、脱硫耗氢、脱氮耗氢、溶解氢气和生成轻烃耗氢)
Fig.5 The impact trend of LHSV changes on hydrogen consumption in hydrotreating units(RH, Sprod, RH2S, RNH3, Rhdis and RLCH represent total hydrogen consumption, sulfur content of product, hydrogen consumption for desulfurization, hydrogen consumption for denitrification, consumption for dissolved hydrogen and hydrogen consumption for light hydrocarbon generation, respectively)
周期 | T/K | P/bar | ||||
---|---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | DHT-1 | DHT-2 | GHT | |
1月 | 644.6 | 656.8 | 520.7 | 65.0 | 68.0 | 25.0 |
3月 | 641.7 | 665.0 | 530.0 | 65.0 | 70.8 | 27.6 |
5月 | 660.0 | 636.5 | 511.3 | 65.5 | 68.0 | 25.0 |
7月 | 660.0 | 644.1 | 516.8 | 66.0 | 68.0 | 25.0 |
9月 | 616.0 | 665.0 | 519.0 | 65.0 | 71.2 | 25.9 |
11月 | 660.0 | 665.0 | 530.8 | 65.6 | 71.8 | 25.2 |
表6 HDT优化后的操作条件
Table 6 Optimal operation conditions of hydrotreating units
周期 | T/K | P/bar | ||||
---|---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | DHT-1 | DHT-2 | GHT | |
1月 | 644.6 | 656.8 | 520.7 | 65.0 | 68.0 | 25.0 |
3月 | 641.7 | 665.0 | 530.0 | 65.0 | 70.8 | 27.6 |
5月 | 660.0 | 636.5 | 511.3 | 65.5 | 68.0 | 25.0 |
7月 | 660.0 | 644.1 | 516.8 | 66.0 | 68.0 | 25.0 |
9月 | 616.0 | 665.0 | 519.0 | 65.0 | 71.2 | 25.9 |
11月 | 660.0 | 665.0 | 530.8 | 65.6 | 71.8 | 25.2 |
周期 | 加氢精制装置氢耗/(kmol/h) | 总变化/ (kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT-1 | ||||||||
优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | ||
1月 | 855 | 818 | -4.28 | 1063 | 1047 | -1.54 | 385 | 235 | -39.00 | -203 |
3月 | 978 | 949 | -3.04 | 1022 | 1071 | 4.80 | 194 | 167 | -14.03 | -8 |
5月 | 623 | 591 | -5.17 | 1173 | 1124 | -4.14 | 488 | 370 | -24.06 | -198 |
7月 | 749 | 737 | -1.52 | 1204 | 1171 | -2.75 | 578 | 457 | -20.89 | -165 |
9月 | 1024 | 981 | -4.25 | 845 | 901 | 6.74 | 224 | 131 | -41.37 | -79 |
11月 | 787 | 770 | -2.20 | 994 | 1060 | 6.73 | 297 | 122 | -58.83 | -125 |
表7 HDT装置优化前后的氢耗
Table 7 Hydrogen consumption before and after optimizing operating conditions of hydrotreating units
周期 | 加氢精制装置氢耗/(kmol/h) | 总变化/ (kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT-1 | ||||||||
优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | ||
1月 | 855 | 818 | -4.28 | 1063 | 1047 | -1.54 | 385 | 235 | -39.00 | -203 |
3月 | 978 | 949 | -3.04 | 1022 | 1071 | 4.80 | 194 | 167 | -14.03 | -8 |
5月 | 623 | 591 | -5.17 | 1173 | 1124 | -4.14 | 488 | 370 | -24.06 | -198 |
7月 | 749 | 737 | -1.52 | 1204 | 1171 | -2.75 | 578 | 457 | -20.89 | -165 |
9月 | 1024 | 981 | -4.25 | 845 | 901 | 6.74 | 224 | 131 | -41.37 | -79 |
11月 | 787 | 770 | -2.20 | 994 | 1060 | 6.73 | 297 | 122 | -58.83 | -125 |
周期 | 氢气消耗/(kmol/h) | 成本/CNY | ||||
---|---|---|---|---|---|---|
氢气成本 | 脱硫成本 | 电力成本 | 燃烧收益 | 运营成本 | ||
1月 | 2329 | 4.14×107 | 6.17×106 | 3.54×106 | 1.01×106 | 5.02×107 |
3月 | 2812 | 5.86×107 | 8.47×106 | 4.27×106 | 1.42×106 | 7.01×107 |
5月 | 2474 | 4.66×107 | 6.39×106 | 4.30×106 | 8.81×105 | 5.66×107 |
7月 | 2768 | 5.70×107 | 8.23×106 | 4.18×106 | 1.45×106 | 6.82×107 |
9月 | 2289 | 4.00×107 | 6.17×106 | 4.58×106 | 7.69×105 | 5.02×107 |
11月 | 2399 | 4.39×107 | 9.05×106 | 4.44×106 | 1.11×106 | 5.65×107 |
总计 | — | 2.88×108 | 4.45×107 | 2.52×107 | 6.64×106 | 3.52×108 |
表8 各周期的氢气消耗速率和各项成本
Table 8 Hydrogen consumption and costs for each time period
周期 | 氢气消耗/(kmol/h) | 成本/CNY | ||||
---|---|---|---|---|---|---|
氢气成本 | 脱硫成本 | 电力成本 | 燃烧收益 | 运营成本 | ||
1月 | 2329 | 4.14×107 | 6.17×106 | 3.54×106 | 1.01×106 | 5.02×107 |
3月 | 2812 | 5.86×107 | 8.47×106 | 4.27×106 | 1.42×106 | 7.01×107 |
5月 | 2474 | 4.66×107 | 6.39×106 | 4.30×106 | 8.81×105 | 5.66×107 |
7月 | 2768 | 5.70×107 | 8.23×106 | 4.18×106 | 1.45×106 | 6.82×107 |
9月 | 2289 | 4.00×107 | 6.17×106 | 4.58×106 | 7.69×105 | 5.02×107 |
11月 | 2399 | 4.39×107 | 9.05×106 | 4.44×106 | 1.11×106 | 5.65×107 |
总计 | — | 2.88×108 | 4.45×107 | 2.52×107 | 6.64×106 | 3.52×108 |
周期 | 新鲜氢气消耗/(kmol/h) | 运营成本/CNY | ||||
---|---|---|---|---|---|---|
优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | |
1月 | 2531 | 2329 | -7.98 | 5.71×107 | 5.02×107 | -12.14 |
3月 | 2825 | 2812 | -0.46 | 7.06×107 | 7.01×107 | -0.80 |
5月 | 2670 | 2474 | -7.34 | 6.32×107 | 5.66×107 | -10.54 |
7月 | 2868 | 2768 | -3.49 | 7.14×107 | 6.82×107 | -4.55 |
9月 | 2370 | 2289 | -3.42 | 5.29×107 | 5.02×107 | -5.17 |
11月 | 2526 | 2399 | -5.03 | 6.10×107 | 5.65×107 | -7.40 |
总计 | — | — | — | 3.76×108 | 3.52×108 | -6.55 |
表9 优化前后氢气消耗速率和总成本对比
Table 9 Comparison of hydrogen consumption and total cost before and after optimization
周期 | 新鲜氢气消耗/(kmol/h) | 运营成本/CNY | ||||
---|---|---|---|---|---|---|
优化前 | 优化后 | 变动/% | 优化前 | 优化后 | 变动/% | |
1月 | 2531 | 2329 | -7.98 | 5.71×107 | 5.02×107 | -12.14 |
3月 | 2825 | 2812 | -0.46 | 7.06×107 | 7.01×107 | -0.80 |
5月 | 2670 | 2474 | -7.34 | 6.32×107 | 5.66×107 | -10.54 |
7月 | 2868 | 2768 | -3.49 | 7.14×107 | 6.82×107 | -4.55 |
9月 | 2370 | 2289 | -3.42 | 5.29×107 | 5.02×107 | -5.17 |
11月 | 2526 | 2399 | -5.03 | 6.10×107 | 5.65×107 | -7.40 |
总计 | — | — | — | 3.76×108 | 3.52×108 | -6.55 |
模型 | 成本/CNY | 与原氢气网络 成本对比/% | ||||
---|---|---|---|---|---|---|
氢气成本 | 脱硫成本 | 电力成本 | 燃烧收益 | 总成本 | ||
原氢气网络模型 | 4.81×108 | — | 2.38×107 | 3.81×107 | 4.68×108 | — |
集成氢气网络模型 | 3.13×108 | 4.47×107 | 2.57×107 | 6.02×106 | 3.76×108 | -19.53 |
优化加氢精制装置操作参数 | 2.88×108 | 4.45×107 | 2.52×107 | 6.64×106 | 3.52×108 | -24.82 |
表10 各模型的年度运营成本对比
Table 10 Comparison of annual operational costs for each model
模型 | 成本/CNY | 与原氢气网络 成本对比/% | ||||
---|---|---|---|---|---|---|
氢气成本 | 脱硫成本 | 电力成本 | 燃烧收益 | 总成本 | ||
原氢气网络模型 | 4.81×108 | — | 2.38×107 | 3.81×107 | 4.68×108 | — |
集成氢气网络模型 | 3.13×108 | 4.47×107 | 2.57×107 | 6.02×106 | 3.76×108 | -19.53 |
优化加氢精制装置操作参数 | 2.88×108 | 4.45×107 | 2.52×107 | 6.64×106 | 3.52×108 | -24.82 |
1 | De La Paz-Zavala C, Burgos-Vázquez E, Rodríguez-Rodríguez J E, et al. Ultra low sulfur diesel simulation. Application to commercial units[J]. Fuel, 2013, 110: 227-234. |
2 | Wu L, Liu Y Z, Zhang Q D. Operational optimization of a hydrotreating system based on removal of sulfur compounds in hydrotreaters coupled with a fluid catalytic cracker[J]. Energy & Fuels, 2017, 31(9): 9850-9862. |
3 | 石宝明, 廖健, 白雪松. 炼厂氢气的管理[J]. 化工技术经济, 2003, 21(1): 55-59. |
Shi B M, Liao J, Bai X S. Hydrogen management in refinery[J]. Chemical Techno Economics, 2003, 21(1): 55-59. | |
4 | Towler G P, Mann R, Serriere A J L, et al. Refinery hydrogen management: cost analysis of chemically-integrated facilities[J]. Industrial & Engineering Chemistry Research, 1996, 35(7): 2378-2388. |
5 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
6 | Zhang Q, Feng X, Liu G L, et al. A novel graphical method for the integration of hydrogen distribution systems with purification reuse[J]. Chemical Engineering Science, 2011, 66(4): 797-809. |
7 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
8 | Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330. |
9 | Peramanu S. Economics of hydrogen recovery processes for the purification of hydroprocessor purge and off-gases[J]. International Journal of Hydrogen Energy, 1999, 24(5): 405-424. |
10 | 梁肖强, 刘永忠, 张亮. 集中式提纯器的设置与具有中间等级氢气网络的优化[J]. 化工进展, 2014, 33(3): 577-582. |
Liang X Q, Liu Y Z, Zhang L. Installation of a centralized purifier and optimization of hydrogen network with intermediate levels[J].Chemical Industry and Engineering Progress, 2014, 33(3): 577-582. | |
11 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
12 | Zhang Q, Liu G L, Feng X, et al. Hydrogen networks synthesis considering separation performance of purifiers[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8357-8373. |
13 | 杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12): 4544-4549. |
Yang M B, Feng X. Change rules of pinch point for hydrogen distribution systems with purification reuse[J]. CIESC Journal, 2013, 64(12): 4544-4549. | |
14 | Lou J Y, Liao Z W, Jiang B B, et al. Pinch sliding approach for targeting hydrogen and water networks with different types of purifier[J]. Industrial & Engineering Chemistry Research, 2013, 52(25): 8538-8549. |
15 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
16 | Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks(part Ⅱ): Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. |
17 | 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153. |
Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153. | |
18 | Zhang Q, Yang M B, Liu G L, et al. Relative concentration based pinch analysis for targeting and design of hydrogen and water networks with single contaminant[J]. Journal of Cleaner Production, 2016, 112: 4799-4814. |
19 | Kumar A, Gautami G, Khanam S. Hydrogen distribution in the refinery using mathematical modeling[J]. Energy, 2010, 35(9): 3763-3772. |
20 | Fonseca A, Sá V, Bento H, et al. Hydrogen distribution network optimization: a refinery case study[J]. Journal of Cleaner Production, 2008, 16(16): 1755-1763. |
21 | Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695. |
22 | Singh B B, Zhang N. Impact of gas phase impurities on refinery hydrogen network management[R]. New York: American Institute of Chemical Engineers, 2005. |
23 | Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. |
24 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
25 | Wu L, Liang X Q, Kang L X, et al. Integration strategies of hydrogen network in a refinery based on operational optimization of hydrotreating units[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1061-1068. |
26 | Mao J B, Liu G L, Wang Y J, et al. Integration of a hydrogen network with the vacuum gas oil hydrocracking reaction[J]. Chemical Engineering Transactions, 2015, 45: 85-90. |
27 | Umana B, Shoaib A, Zhang N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation[J]. Applied Energy, 2014, 133: 169-182. |
28 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
29 | Rodriguez P A A. Modeling of hydrogen consumption and process optimization for hydrotreating of light gas oils[D]. Saskatchewan: University of Saskatchewan, 2017. |
30 | Choudhary T V, Parrott S, Johnson B. Unraveling heavy oil desulfurization chemistry: targeting clean fuels[J]. Environmental Science & Technology, 2008, 42(6): 1944-1947. |
31 | 李大东, 聂红, 孙丽丽. 加氢处理工艺与工程[M]. 2版. 北京: 中国石化出版社, 2016. |
Li D D, Nie H, Sun L L. Hydrogenation Process and Engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016. | |
32 | Cotta R M, Wolf-Maciel M R, Filho R M. A cape of HDT industrial reactor for middle distillates[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 1731-1735. |
33 | Hasenberg D M, Campagnolo Jr J F. Modeling and simulation of a reaction for hydrotreating hydrocarbon oil: US5841678[P]. 1998-11-24. |
34 | McCarl B A, Meeraus A, Eijk P V D, et al. McCarl GAMS user guide[Z]. GAMS Development Corporation, 2014. |
[1] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[2] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[3] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[4] | 余洋, 罗祎青, 魏荣辉, 张文慧, 袁希钢. 考虑节点中断风险的弹性供应链设计方法[J]. 化工学报, 2024, 75(1): 338-353. |
[5] | 余留洋, 刘书博, 贾晟哲, 马航, 万邦隆, 苏琦雯, 王静康, 汤伟伟, 贺豫娟, 龚俊波. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||