化工学报 ›› 2024, Vol. 75 ›› Issue (9): 3277-3286.DOI: 10.11949/0438-1157.20240289
收稿日期:
2024-03-12
修回日期:
2024-06-03
出版日期:
2024-09-25
发布日期:
2024-10-10
通讯作者:
王军锋
作者简介:
王军锋(1975—),男,博士,教授,wangjunfeng@ujs.edu.cn
基金资助:
Junfeng WANG(), Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG
Received:
2024-03-12
Revised:
2024-06-03
Online:
2024-09-25
Published:
2024-10-10
Contact:
Junfeng WANG
摘要:
利用液相阵列电极滑动弧放电等离子体分解甲醇来优化现有制氢技术,系统研究了不同电极配置对制氢性能的影响。获得最优极配数量,发现同放电功率下4针电极最大氢气流速达到1188.54 ml/min,相对于单针提高了118%。此外,在液相放电中阵列针-环结构相比阵列针-孔板结构具有更高的氢气产能和能量产率。在阵列针-环电极配置工况,滑动弧放电等离子体分解甲醇表现出最佳制氢性能,能量产率69.75 g/kWh,能量效率71.12%,优于现有大多数制氢方案。
中图分类号:
王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286.
Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration[J]. CIESC Journal, 2024, 75(9): 3277-3286.
模式 | d/mm | 环电极 | 孔板电极 | ||
---|---|---|---|---|---|
ΔT/℃ | δ/% | ΔT/℃ | δ/% | ||
GAD | 5 | 4.3±0.4 | 41.1 | 4.4±0.6 | 42.2 |
10 | 9.0±0.6 | 40.6 | 7.4±0.9 | 32.1 | |
GD | 15 | 16.9±0.8 | 42.3 | 20.1±0.7 | 54.5 |
20 | 16.5±0.5 | 40.5 | 18.9±0.3 | 54.0 | |
25 | 19.8±0.7 | 46.9 | 21.2±0.5 | 59.1 |
表1 电极间距对温度变化的影响
Table 1 Effect of electrode spacing on temperature variation
模式 | d/mm | 环电极 | 孔板电极 | ||
---|---|---|---|---|---|
ΔT/℃ | δ/% | ΔT/℃ | δ/% | ||
GAD | 5 | 4.3±0.4 | 41.1 | 4.4±0.6 | 42.2 |
10 | 9.0±0.6 | 40.6 | 7.4±0.9 | 32.1 | |
GD | 15 | 16.9±0.8 | 42.3 | 20.1±0.7 | 54.5 |
20 | 16.5±0.5 | 40.5 | 18.9±0.3 | 54.0 | |
25 | 19.8±0.7 | 46.9 | 21.2±0.5 | 59.1 |
技术路线 | 原料 | 电极配置 | EY/(g/kWh) | EE/% | 文献 | ||
---|---|---|---|---|---|---|---|
electrolysis | 水 | — | — | — | 11.9~19.84 | — | [ |
microwave | 甲烷+水 | — | 2202.3 | 71.1 | 13.25 | 37.9 | [ |
microwave | 乙醇+水 | — | 17400 | 59.1 | 62.44 | — | [ |
Laval nozzle arc | 乙醇+水 | — | 2500 | 40 | 99.21 | 28 | [ |
DBD | 乙醇+水 | — | 48 | 58.2 | 12.32 | — | [ |
AC discharge | 甲醇+水 | — | 2780 | 约63 | 29.08 | 约42 | [ |
GAD | 甲烷+水 | 刀片式 | 135.27 | 72.2 | 16.47 | 28.8 | [ |
GAD | 甲醇+氮气 | 同轴针-筒 | 2252 | 53.1 | 34.54 | 约51 | [ |
GAD | 甲醇 | 针-环 | 567 | 62.58 | 55.8 | 55.1 | [ |
GAD | 甲醇 | 阵列针-环 | 1188.54 | 65.65 | 69.75 | 71.12 | this work |
表2 不同方法制氢性能对比
Table 2 Comparison of hydrogen production performance by different methods
技术路线 | 原料 | 电极配置 | EY/(g/kWh) | EE/% | 文献 | ||
---|---|---|---|---|---|---|---|
electrolysis | 水 | — | — | — | 11.9~19.84 | — | [ |
microwave | 甲烷+水 | — | 2202.3 | 71.1 | 13.25 | 37.9 | [ |
microwave | 乙醇+水 | — | 17400 | 59.1 | 62.44 | — | [ |
Laval nozzle arc | 乙醇+水 | — | 2500 | 40 | 99.21 | 28 | [ |
DBD | 乙醇+水 | — | 48 | 58.2 | 12.32 | — | [ |
AC discharge | 甲醇+水 | — | 2780 | 约63 | 29.08 | 约42 | [ |
GAD | 甲烷+水 | 刀片式 | 135.27 | 72.2 | 16.47 | 28.8 | [ |
GAD | 甲醇+氮气 | 同轴针-筒 | 2252 | 53.1 | 34.54 | 约51 | [ |
GAD | 甲醇 | 针-环 | 567 | 62.58 | 55.8 | 55.1 | [ |
GAD | 甲醇 | 阵列针-环 | 1188.54 | 65.65 | 69.75 | 71.12 | this work |
1 | Kosco J, Gonzalez-Carrero S, Howells C T, et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution[J]. Nature Energy, 2022, 7: 340-351. |
2 | Veziroğlu T N, Şahi˙n S. 21st century’s energy: hydrogen energy system[J]. Energy Conversion and Management, 2008, 49(7): 1820-1831. |
3 | Do T N, Kwon H, Park M, et al. Carbon-neutral hydrogen production from natural gas via electrified steam reforming: techno-economic-environmental perspective[J]. Energy Conversion and Management, 2023, 279: 116758. |
4 | Akande O, Lee B. Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2874-2884. |
5 | Budhraja N, Pal A, Mishra R S. Plasma reforming for hydrogen production: pathways, reactors and storage[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2467-2482. |
6 | Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12(2): 463-491. |
7 | 张俊杰, 孙旺, 高啸天, 等. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763. |
Zhang J J, Sun W, Gao X T, et al. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74(12): 4749-4763. | |
8 | 丁天英, 刘景林, 赵天亮, 等. 非热等离子体烃类燃料氧化重整反应器的研究进展[J]. 化工学报, 2015, 66(3): 872-879. |
Ding T Y, Liu J L, Zhao T L, et al. Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel[J]. CIESC Journal, 2015, 66(3): 872-879. | |
9 | Yan Z C, Li C, Lin W H. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions[J]. International Journal of Hydrogen Energy, 2009, 34(1): 48-55. |
10 | Lian H Y, Liu J L, Li X S, et al. Plasma chain catalytic reforming of methanol for on-board hydrogen production[J]. Chemical Engineering Journal, 2019, 369: 245-252. |
11 | Xin Y B, Sun B, Zhu X M, et al. Characteristics of hydrogen produced by pulsed discharge in ethanol solution[J]. Applied Energy, 2016, 168: 122-129. |
12 | Zhang W, Wang J F, Wang Z T, et al. Review of bubble dynamics on charged liquid-gas flow[J]. Physics of Fluids, 2023, 35(2): 021302. |
13 | Wu T Y, Wang J F, Zhang W, et al. Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge[J]. Energy, 2023, 273: 127252. |
14 | Zhu T H, Liu J L, Xin Y B, et al. Hydrogen production by microwave discharge in liquid: study on the characteristics effect of suspended electrode[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105529. |
15 | 吴祖良, 成雨莲, 高尔豪, 等. 甲烷等离子体裂解制氢制碳的影响因素研究[J]. 石油学报(石油加工), 2023, 39(5): 1205-1214. |
Wu Z L, Cheng Y L, Gao E H, et al. Study on the influencing factors of hydrogen and carbon production from methane plasma cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1205-1214. | |
16 | Du C M, Li H X, Zhang L, et al. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8318-8329. |
17 | Chen W H, Biswas P P, Ong H C, et al. A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: steam reforming, partial oxidation, and autothermal reforming[J]. Fuel, 2023, 333: 126526. |
18 | Song L J, Kong Y L, Li X H. Hydrogen production from partial oxidation of methane over dielectric barrier discharge plasma and NiO/γ-Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19869-19876. |
19 | Wang Q Y, Wang J Q, Zhu T H, et al. Characteristics of methane wet reforming driven by microwave plasma in liquid phase for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34105-34115. |
20 | Ulejczyk B, Nogal Ł, Młotek M, et al. Hydrogen production from ethanol using dielectric barrier discharge[J]. Energy, 2019, 174: 261-268. |
21 | Burlica R, Shih K Y, Hnatiuc B, et al. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9466-9470. |
22 | Khan A, Rashid M, Rehman A, et al. A comprehensive review of the methane decomposition using a gliding arc discharge reactor for hydrogen generation[J]. Journal of the Energy Institute, 2023, 109: 101309. |
23 | Younas M, Shafique S, Faisal A, et al. Hydrogen production through water vapors using optimized corona-DBD hybrid plasma micro-reactor[J]. Fuel, 2023, 331: 125838. |
24 | Aleknaviciute I, Karayiannis T G, Collins M W, et al. Methane decomposition under a corona discharge to generate CO x -free hydrogen[J]. Energy, 2013, 59: 432-439. |
25 | Xin Y B, Sun B, Zhu X M, et al. Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge[J]. Energy, 2021, 214: 118902. |
26 | Gao Y, Zhang S, Sun H, et al. Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges[J]. Applied Energy, 2018, 226: 534-545. |
27 | Moshrefi M M, Rashidi F. Hydrogen production from methane by DC spark discharge: effect of current and voltage[J]. Journal of Natural Gas Science and Engineering, 2014, 16: 85-89. |
28 | Sun B, Zhao X T, Xin Y B, et al. Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24047-24054. |
29 | Akande O, Lee B, Okolie J A, et al. Hydrogen-rich syngas generation through microwave plasma reforming of greenhouse gases[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34649-34658. |
30 | Xin Y B, Wang Q L, Sun J B, et al. Plasma in aqueous methanol: influence of plasma initiation mechanism on hydrogen production[J]. Applied Energy, 2022, 325: 119892. |
31 | Tachibana K, Takekata Y, Mizumoto Y, et al. Analysis of a pulsed discharge within single bubbles in water under synchronized conditions[J]. Plasma Sources Science and Technology, 2011, 20(3): 034005. |
32 | Tian W, Tachibana K, Kushner M J. Plasmas sustained in bubbles in water: optical emission and excitation mechanisms[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055202. |
33 | Fridman A, Nester S, Kennedy L, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1998, 25(2): 211-231. |
34 | Jaiswal A K, Ananthanarasimhan J, Shivapuji A M, et al. Experimental investigation of a non-catalytic cold plasma water-gas shift reaction[J]. Journal of Physics D Applied Physics, 2020, 53(46): 465205. |
35 | Florkowska B, Wlodek R. Pulse height analysis of partial discharges in air[J]. IEEE Transactions on Electrical Insulation, 1993, 28(6): 932-940. |
36 | Zhang W, Wang J F, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field[J]. Chemical Engineering Science, 2020, 215: 115451. |
37 | Götz M, Lefebvre J, Mörs F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
38 | Wang Q Y, Wang Y Y, Sun J B, et al. Hydrogen production from simulated seawater by microwave liquid discharge: a new way of green production[J]. Chemical Engineering Journal, 2023, 465: 142872. |
39 | Wang B W, Cheng Y, Wang C Y, et al. Steam reforming of methane in a gliding arc discharge reactor to produce hydrogen and its chemical kinetics study[J]. Chemical Engineering Science, 2022, 253: 117560. |
40 | Zhang H, Li X D, Zhu F S, et al. Non-oxidative decomposition of methanol into hydrogen in a rotating gliding arc plasma reactor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15901-15912. |
[1] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[2] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[3] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[4] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[5] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
[6] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[7] | 许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911. |
[8] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
[9] | 徐欣欣, 冀芸丽, 武鲜凤, 安霞, 吴旭. 水滑石衍生CuMgFe-LDO催化剂协同净化氮氧化物和甲醇[J]. 化工学报, 2024, 75(5): 1890-1902. |
[10] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[11] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[12] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[13] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[14] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
[15] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||