化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1143-1155.DOI: 10.11949/0438-1157.20240872
王大芬1(
), 唐莉丽2, 张鑫焱1, 聂春雨1, 李明珠3, 吴菁1,3(
)
收稿日期:2024-08-01
修回日期:2024-09-27
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
吴菁
作者简介:王大芬(1998—),女,硕士研究生,wangdafen2024@163.com
基金资助:
Dafen WANG1(
), Lili TANG2, Xinyan ZHANG1, Chunyu NIE1, Mingzhu LI3, Jing WU1,3(
)
Received:2024-08-01
Revised:2024-09-27
Online:2025-03-25
Published:2025-03-28
Contact:
Jing WU
摘要:
软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。
中图分类号:
王大芬, 唐莉丽, 张鑫焱, 聂春雨, 李明珠, 吴菁. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报, 2025, 76(3): 1143-1155.
Dafen WANG, Lili TANG, Xinyan ZHANG, Chunyu NIE, Mingzhu LI, Jing WU. Multi-output tri-training heterogeneous soft sensor modeling based on time difference[J]. CIESC Journal, 2025, 76(3): 1143-1155.
| 评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co-T | Tri-T | TD-Tri-T |
|---|---|---|---|---|---|---|---|---|---|
| RMSE | SS | 0.0329 | 0.0155 | 0.0444 | 0.0530 | 0.0114 | 0.0088 | 0.0046 | 0.0002 |
| SNH | 2.0334 | 2.8299 | 1.2665 | 1.6792 | 2.9049 | 1.3308 | 0.6824 | 0.0480 | |
| SNO | 1.2883 | 1.4613 | 0.9687 | 0.9366 | 1.7349 | 0.3288 | 0.3176 | 0.0120 | |
| COD | 1.3037 | 1.8082 | 1.2151 | 2.4669 | 2.9519 | 0.5237 | 0.3353 | 0.1169 | |
| BOD5 | 0.0187 | 0.0195 | 0.0201 | 0.0191 | 0.0332 | 0.0048 | 0.0049 | 0.0027 | |
| R | SS | 0.9005 | 0.8702 | 0.8581 | 0.7497 | 0.8710 | 0.8796 | 0.9619 | 0.9975 |
| SNH | 0.9530 | 0.8329 | 0.9390 | 0.8954 | 0.8337 | 0.9268 | 0.9652 | 0.9972 | |
| SNO | 0.9447 | 0.8780 | 0.9428 | 0.8970 | 0.8773 | 0.9514 | 0.9713 | 0.9982 | |
| COD | 0.9730 | 0.8772 | 0.9660 | 0.8837 | 0.8771 | 0.9549 | 0.9742 | 0.9892 | |
| BOD5 | 0.9923 | 0.9599 | 0.9904 | 0.9817 | 0.9604 | 0.9835 | 0.9911 | 0.9900 | |
| RMSSD | — | 2.1626 | 2.4768 | 1.8748 | 2.2704 | 2.7634 | 1.4829 | 1.1597 | 0.4241 |
| RR | — | 0.7308 | 0.6469 | 0.7977 | 0.7033 | 0.5604 | 0.8734 | 0.9226 | 0.9896 |
表1 模型在BSM1中预测结果对比
Table 1 Comparison of model predictions in BSM1
| 评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co-T | Tri-T | TD-Tri-T |
|---|---|---|---|---|---|---|---|---|---|
| RMSE | SS | 0.0329 | 0.0155 | 0.0444 | 0.0530 | 0.0114 | 0.0088 | 0.0046 | 0.0002 |
| SNH | 2.0334 | 2.8299 | 1.2665 | 1.6792 | 2.9049 | 1.3308 | 0.6824 | 0.0480 | |
| SNO | 1.2883 | 1.4613 | 0.9687 | 0.9366 | 1.7349 | 0.3288 | 0.3176 | 0.0120 | |
| COD | 1.3037 | 1.8082 | 1.2151 | 2.4669 | 2.9519 | 0.5237 | 0.3353 | 0.1169 | |
| BOD5 | 0.0187 | 0.0195 | 0.0201 | 0.0191 | 0.0332 | 0.0048 | 0.0049 | 0.0027 | |
| R | SS | 0.9005 | 0.8702 | 0.8581 | 0.7497 | 0.8710 | 0.8796 | 0.9619 | 0.9975 |
| SNH | 0.9530 | 0.8329 | 0.9390 | 0.8954 | 0.8337 | 0.9268 | 0.9652 | 0.9972 | |
| SNO | 0.9447 | 0.8780 | 0.9428 | 0.8970 | 0.8773 | 0.9514 | 0.9713 | 0.9982 | |
| COD | 0.9730 | 0.8772 | 0.9660 | 0.8837 | 0.8771 | 0.9549 | 0.9742 | 0.9892 | |
| BOD5 | 0.9923 | 0.9599 | 0.9904 | 0.9817 | 0.9604 | 0.9835 | 0.9911 | 0.9900 | |
| RMSSD | — | 2.1626 | 2.4768 | 1.8748 | 2.2704 | 2.7634 | 1.4829 | 1.1597 | 0.4241 |
| RR | — | 0.7308 | 0.6469 | 0.7977 | 0.7033 | 0.5604 | 0.8734 | 0.9226 | 0.9896 |
| 评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co- T | Tri-T | TD-Tri-T |
|---|---|---|---|---|---|---|---|---|---|
| RMSE | RD-DBO-S | 5.5993 | 9.4782 | 9.7191 | 8.2374 | 8.1915 | 6.8208 | 6.0088 | 2.2027 |
| RD-DQO-S | 9.2398 | 30.2485 | 22.0837 | 16.1403 | 32.0591 | 20.7495 | 16.2536 | 5.1481 | |
| DQO-S | 47.7297 | 178.8840 | 130.8652 | 102.2509 | 175.5264 | 141.0183 | 79.3885 | 26.2291 | |
| DBO-S | 5.1726 | 9.7693 | 7.8801 | 9.1391 | 9.9370 | 7.251 | 4.8671 | 2.7903 | |
| R | RD-DBO-S | 0.9110 | 0.8608 | 0.8437 | 0.8753 | 0.8708 | 0.8916 | 0.9125 | 0.9668 |
| RD-DQO-S | 0.9221 | 0.7105 | 0.8309 | 0.8646 | 0.7111 | 0.8188 | 0.8651 | 0.9577 | |
| DQO-S | 0.9142 | 0.6191 | 0.7675 | 0.8106 | 0.6281 | 0.7707 | 0.8682 | 0.9560 | |
| DBO-S | 0.9030 | 0.8046 | 0.8482 | 0.8260 | 0.8057 | 0.8657 | 0.9181 | 0.9493 | |
| RMSSD | — | 8.2305 | 15.1122 | 13.0594 | 11.6519 | 15.0238 | 13.2605 | 10.3208 | 6.0308 |
| RR | — | 0.8345 | 0.4421 | 0.5833 | 0.6683 | 0.4486 | 0.5704 | 0.7398 | 0.9111 |
表2 各模型在UCI中预测结果对比
Table 2 Comparison of prediction results of each model in UCI
| 评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co- T | Tri-T | TD-Tri-T |
|---|---|---|---|---|---|---|---|---|---|
| RMSE | RD-DBO-S | 5.5993 | 9.4782 | 9.7191 | 8.2374 | 8.1915 | 6.8208 | 6.0088 | 2.2027 |
| RD-DQO-S | 9.2398 | 30.2485 | 22.0837 | 16.1403 | 32.0591 | 20.7495 | 16.2536 | 5.1481 | |
| DQO-S | 47.7297 | 178.8840 | 130.8652 | 102.2509 | 175.5264 | 141.0183 | 79.3885 | 26.2291 | |
| DBO-S | 5.1726 | 9.7693 | 7.8801 | 9.1391 | 9.9370 | 7.251 | 4.8671 | 2.7903 | |
| R | RD-DBO-S | 0.9110 | 0.8608 | 0.8437 | 0.8753 | 0.8708 | 0.8916 | 0.9125 | 0.9668 |
| RD-DQO-S | 0.9221 | 0.7105 | 0.8309 | 0.8646 | 0.7111 | 0.8188 | 0.8651 | 0.9577 | |
| DQO-S | 0.9142 | 0.6191 | 0.7675 | 0.8106 | 0.6281 | 0.7707 | 0.8682 | 0.9560 | |
| DBO-S | 0.9030 | 0.8046 | 0.8482 | 0.8260 | 0.8057 | 0.8657 | 0.9181 | 0.9493 | |
| RMSSD | — | 8.2305 | 15.1122 | 13.0594 | 11.6519 | 15.0238 | 13.2605 | 10.3208 | 6.0308 |
| RR | — | 0.8345 | 0.4421 | 0.5833 | 0.6683 | 0.4486 | 0.5704 | 0.7398 | 0.9111 |
| 1 | 张志文. 污水处理过程中软测量技术的研究及应用[J]. 城市建设理论研究(电子版), 2018(16): 70. |
| Zhang Z W. Research and application of soft sensor technology in sewage treatment process[J]. Theoretical Research in Urban Construction, 2018(16): 70. | |
| 2 | 苗露, 姚怡帆, 王黎佳, 等. 基于GA-机器学习模型的污水处理厂BOD软测量研究[J]. 青岛理工大学学报, 2023, 44(2): 133-139. |
| Miao L, Yao Y F, Wang L J, et al. Research on BOD soft sensing of wastewater treatment plant based on GA-machine learning model[J]. Journal of Qingdao University of Technology, 2023, 44(2): 133-139. | |
| 3 | 金绍琴, 唐莉丽, 吴菁, 等. 基于时差-即时学习的相关向量机软测量建模研究[J]. 自动化与信息工程, 2023, 44(5): 22-31. |
| Jin S Q, Tang L L, Wu J, et al. Research on soft sensor modeling of relevance vector machine based on time difference-just in time[J]. Automation & Information Engineering, 2023, 44(5): 22-31. | |
| 4 | 方港, 袁珑华, 王晓明, 等. 基于集合卡尔曼-Elman网络的软测量建模方法[J]. 华南理工大学学报(自然科学版), 2023, 51(8): 126-136. |
| Fang G, Yuan L H, Wang X M, et al. Soft-sensor modeling method based on ensemble Kalman filter-Elman neural network[J]. Journal of South China University of Technology (Natural Science Edition), 2023, 51(8): 126-136. | |
| 5 | Yan W W, Guo P J, Tian Y, et al. A framework and modeling method of data-driven soft sensors based on semisupervised Gaussian regression[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7394-7401. |
| 6 | Alkaim A F, Al_Janabi S. Multi objectives optimization to gas flaring reduction from oil production[M]//Lecture Notes in Networks and Systems. Cham: Springer International Publishing, 2019: 117-139. |
| 7 | Bao L, Yuan X F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147: 75-85. |
| 8 | Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]//Proceedings of the Seventeenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2000: 327-334. |
| 9 | Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training[C]//Proceedings of the Ninth International Conference on Information and Knowledge Management. McLean Virginia, USA: ACM, 2000: 86-93. |
| 10 | 李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138. |
| Li D, Huang D P, Liu Y Q. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model[J]. CIESC Journal, 2020, 71(5): 2128-2138. | |
| 11 | Wu J, Tang L L, Jin S Q, et al. Modeling an adaptive hybrid soft sensor with co-training learning toward applications in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2023, 62(41): 16841-16853. |
| 12 | Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541. |
| 13 | Zhu X Y, Zhang H B, Ren Q, et al. A tri-training method for lithofacies identification under scarce labeled logging data[J]. Earth Science Informatics, 2023, 16(2): 1489-1501. |
| 14 | Li Z B, Zhang S P. A semi-supervised deep learning method in network intrusion detection[C]//International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023). Nanjing, China: SPIE, 2023: 127180F. |
| 15 | Zhou Z H, Li M. Semi-supervised regression with co-training[C]//Proceedings of the 19th International Joint Conference on Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2005: 908-913. |
| 16 | Li D, Liu Y Q, Huang D P. Development of semi-supervised multiple-output soft-sensors with co-training and tri-training MPLS and MRVM[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 199: 103970. |
| 17 | Tang Y Q, Tang K J, Zhu C Z, et al. Static voltage stability margin prediction of island microgrid based on tri-training-lasso-BP network[C]//2020 IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC, Canada: IEEE, 2020: 1-5. |
| 18 | Chen X H, Zhao J L, Xu M, et al. A quality prediction method based on tri-training weighted ensemble just-in-time learning-relevance vector machine model[J]. Processes, 2023, 11(11): 3129. |
| 19 | Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
| 20 | 李东, 黄道平, 许翀, 等. 基于协同训练的集成自适应GPR-RVM多输出模型研究[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 100-108. |
| Li D, Huang D P, Xu C, et al. On integrated adaptive GPR-RVM multi-output model based on co-training algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6): 100-108. | |
| 21 | Fang G, Liu Y Q, Cai B P, et al. A hierarchical soft-sensor using spatiotemporal information transformation and ARMA with application in wastewater treatment[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3000511. |
| 22 | Cong Q M, Yu W. Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process[J]. Measurement, 2018, 124: 436-446. |
| 23 | Jin H P, Chen X G, Yang J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71: 77-93. |
| 24 | Yeo W S, Saptoro A, Kumar P, et al. Just-in-time based soft sensors for process industries: a status report and recommendations[J]. Journal of Process Control, 2023, 128: 103025. |
| 25 | 肖红军, 刘乙奇, 黄道平. 高斯过程建模方法在工业过程中的应用[J]. 华南理工大学学报(自然科学版), 2016, 44(12): 36-43, 52. |
| Xiao H J, Liu Y Q, Huang D P. Application of Gaussian process modeling method in industrial processes[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 36-43, 52. | |
| 26 | 陈祝丹, 李大字, 刘军, 等. 基于高斯过程回归的橡胶玻璃化温度的预测研究[J]. 橡胶工业, 2022, 69(11): 826-829. |
| Chen Z D, Li D Z, Liu J, et al. Study on prediction of glass transition temperature of rubber based on Gaussian process regression[J]. China Rubber Industry, 2022, 69(11): 826-829. | |
| 27 | Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244. |
| 28 | Liu Y Q, Liu B, Zhao X J, et al. Development of RVM-based multiple-output soft sensors with serial and parallel stacking strategies[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2727-2734. |
| 29 | Arasanathan T. Template-based pose estimation and tracking of 3D hand motion[D]. Cambridge, East of England, UK: University of Cambridge, 2006. |
| 30 | 许玉格, 曹涛, 罗飞. 基于相关向量机的污水处理出水水质预测模型[J]. 华南理工大学学报(自然科学版), 2014, 42(5): 103-108. |
| Xu Y G, Cao T, Luo F. Wastewater effluent quality prediction model based on relevance vector machine[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5): 103-108. | |
| 31 | Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. |
| 32 | Liu Z J, Wan J Q, Ma Y W, et al. Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm[J]. Environmental Science and Pollution Research International, 2019, 26(13): 12828-12841. |
| 33 | 张英, 苏宏业, 褚健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621-624. |
| Zhang Y, Su H Y, Chu J. Soft sensor modeling based on fuzzy least squares support vector machines[J]. Control and Decision, 2005, 20(6): 621-624. | |
| 34 | 牛焕然, 黄国燕, 黄蓉, 等. 基于卡尔曼滤波算法的风电机组动态推力消减控制策略[J]. 太阳能, 2024(1): 43-50. |
| Niu H R, Huang G Y, Huang R, et al. Dynamic thrust reduction control strategy of wind turbine based on Kalman filtering algorithm[J]. Solar Energy, 2024(1): 43-50. | |
| 35 | Kaffash-Charandabi N, Alesheikh A A, Sharif M. A ubiquitous asthma monitoring framework based on ambient air pollutants and individuals' contexts[J]. Environmental Science and Pollution Research International, 2019, 26(8): 7525-7539. |
| 36 | Zhou Z H, Li M. Semisupervised regression with cotraining-style algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1479-1493. |
| 37 | 吴菁, 刘乙奇, 刘坚, 等. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 1472-1484. |
| Wu J, Liu Y Q, Liu J, et al. Study on the soft sensor of multi-kernel relevance vector machine based on time difference[J]. CIESC Journal, 2019, 70(4): 1472-1484. | |
| 38 | Li D, Huang D P, Yu G P, et al. Learning adaptive semi-supervised multi-output soft-sensors with co-training of heterogeneous models[J]. IEEE Access, 2020, 8: 46493-46504. |
| 39 | Liu Y Q, Huang D P, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3356-3367. |
| [1] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [2] | 冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106. |
| [3] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
| [4] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
| [5] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
| [6] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
| [7] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
| [8] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
| [9] | 李季, 王建林, 何睿, 周新杰, 王雯, 赵利强. 基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量[J]. 化工学报, 2024, 75(9): 3231-3241. |
| [10] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
| [11] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [12] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
| [13] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
| [14] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
| [15] | 张建文, 赵挺生, 万平玉, 王倩琳, 窦站, 徐波. 流程工业一体化安全管控探讨[J]. 化工学报, 2024, 75(6): 2375-2384. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号