化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 276-282.DOI: 10.11949/0438-1157.20240342
赵昂然1(), 韩永强1, 王志鹏1, 李鹏飞2, 许亚伟1, 佟会玲1(
)
收稿日期:
2024-03-26
修回日期:
2024-06-25
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
佟会玲
作者简介:
赵昂然(1996—),男,博士研究生,助理工程师,zar1996@qq.com
基金资助:
Angran ZHAO1(), Yongqiang HAN1, Zhipeng WANG1, Pengfei LI2, Yawei XU1, Huiling TONG1(
)
Received:
2024-03-26
Revised:
2024-06-25
Online:
2024-12-25
Published:
2024-12-17
Contact:
Huiling TONG
摘要:
采用固定床反应器研究了赤泥在110℃条件下的同时脱硫脱硝反应性能,以及水蒸气浓度和硫硝比对其的影响。采用氮气吸附仪、pH计、电导率计、激光粒度分析仪和电感耦合等离子体质谱仪等分析手段测试了赤泥的物理性质和化学组成。实验结果表明,赤泥的脱硝效率是Ca(OH)2的2.4倍;反应气体中NO含量对SO2的脱除影响只有不到15%,而硫硝比接近5时,NO的脱除率接近100%;水蒸气的影响存在10%附近的最佳范围,浓度过高会影响前期NO的转化及脱除,但有利于后期的脱硫脱硝效果。赤泥中脱硫脱硝的有效组分包括碱性成分和金属氧化物。
中图分类号:
赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282.
Angran ZHAO, Yongqiang HAN, Zhipeng WANG, Pengfei LI, Yawei XU, Huiling TONG. Experimental study on simultaneous desulfurization and denitrification of red mud at low temperature[J]. CIESC Journal, 2024, 75(S1): 276-282.
元素 | 质量分数/% |
---|---|
Al | 1.705 |
Ca | 19.58 |
Fe | 7.642 |
K | 0.139 |
Mg | 0.5679 |
Na | 0.8436 |
Ti | 2.299 |
表1 ICP赤泥成分
Table 1 The composition of red mud by ICP
元素 | 质量分数/% |
---|---|
Al | 1.705 |
Ca | 19.58 |
Fe | 7.642 |
K | 0.139 |
Mg | 0.5679 |
Na | 0.8436 |
Ti | 2.299 |
参数 | 数值 |
---|---|
pH | 11.19 |
电导率/(μS/cm) | 1279 |
TDS/(mg/L) | 639.2 |
比表面积/(m2/g) | 24.386 |
平均孔容/(cm3/g) | 0.1077 |
平均孔径/Å | 176.59 |
平均粒径/μm | 15.885 |
表2 赤泥物理性质
Table 2 Physical properties of red mud
参数 | 数值 |
---|---|
pH | 11.19 |
电导率/(μS/cm) | 1279 |
TDS/(mg/L) | 639.2 |
比表面积/(m2/g) | 24.386 |
平均孔容/(cm3/g) | 0.1077 |
平均孔径/Å | 176.59 |
平均粒径/μm | 15.885 |
物质 | 平均粒径/μm | 比表面积/(m2/g) |
---|---|---|
石英砂 | 360 | — |
Ca(OH)2 | 3.2 | 6.5 |
表3 Ca(OH)2和石英砂物性[23]
Table 3 Physical properties of Ca(OH)2 and quartz sand[23]
物质 | 平均粒径/μm | 比表面积/(m2/g) |
---|---|---|
石英砂 | 360 | — |
Ca(OH)2 | 3.2 | 6.5 |
1 | 郭沛宇, 张喜刚. 1000万吨的突破——2023年我国赤泥绿色利用取得重大进展[N]. 中国有色金属报, 2024-01-06(1). |
Guo P Y, Zhang X G. Breakthrough of 10 million tons: Significant progress in green utilization of red mud in China in 2023[N]. China Nonferrous Metals News, 2024-01-06(1). | |
2 | 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. |
Li B, Zhang B H, Ning P, et al. Present status and prospect of red mud resource utilization and safety treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 714-723. | |
3 | Power G, Gräfe M, Klauber C. Bauxite residue issues(Ⅰ): Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. |
4 | Klauber C, Gräfe M, Power G. Bauxite residue issues(Ⅱ): Options for residue utilization[J]. Hydrometallurgy, 2011, 108(1/2): 11-32. |
5 | Gräfe M, Power G, Klauber C. Bauxite residue issues(Ⅲ): Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108(1/2): 60-79. |
6 | Gräfe M, Klauber C. Bauxite residue issues(Ⅳ): Old obstacles and new pathways for in situ residue bioremediation[J]. Hydrometallurgy, 2011, 108(1/2): 46-59. |
7 | 胡明慧, 郄志鹏, 张新翰, 等. 碳中和背景下的赤泥综合利用现状[J]. 有色金属(冶炼部分), 2024(3): 69-75. |
Hu M H, Qie Z P, Zhang X H, et al. Status of comprehensive utilization of red mud in the context of carbon neutrality[J]. Nonferrous Metals (Extractive Metallurgy), 2024(3): 69-75. | |
8 | 杨慧, 房辉, 程志远, 等. 赤泥资源化综合利用研究进展[J]. 中国资源综合利用, 2023, 41(6): 109-115. |
Yang H, Fang H, Cheng Z Y, et al. Research progress on comprehensive resource utilization of red mud[J]. China Resources Comprehensive Utilization, 2023, 41(6): 109-115. | |
9 | 耿超, 郭士会, 刘志国, 等. 赤泥资源化综合利用现状及展望[J]. 中国有色冶金, 2022, 51(5): 37-45. |
Geng C, Guo S H, Liu Z G, et al. Current situation and prospect of red mud resource comprehensive utilization[J]. China Nonferrous Metallurgy, 2022, 51(5): 37-45. | |
10 | 熊浩, 张涣清, 杜禹艽, 等. 赤泥的资源化利用研究进展[J]. 中国井矿盐, 2023, 54(3): 24-26. |
Xiong H, Zhang H Q, Du Y J, et al. Reviews of research on the use of red mud as a resource[J]. China Well and Rock Salt, 2023, 54(3): 24-26. | |
11 | 陈吉忠, 马幸, 梁婉. 赤泥资源化利用最新研究进展及展望[J]. 中国资源综合利用, 2023, 41(3): 105-111. |
Chen J Z, Ma X, Liang W. Latest research progress and prospect of red mud resource utilization[J]. China Resources Comprehensive Utilization, 2023, 41(3): 105-111. | |
12 | 冉浩学, 谢名淇, 朱燕, 等. 赤泥在水、土、气环境治理中的应用研究进展[J]. 矿产综合利用, 2022(2): 167-176. |
Ran H X, Xie M Q, Zhu Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 167-176. | |
13 | 南相莉, 张廷安, 吴易全, 等. 拜耳赤泥吸收低浓度二氧化硫的研究[J]. 东北大学学报(自然科学版), 2010, 31(7): 986-989. |
Nan X L, Zhang T A, Wu Y Q, et al. A study on absorption of low-concentration SO2 by Bayer red mud[J]. Journal of Northeastern University (Natural Science), 2010, 31(7): 986-989. | |
14 | 左晓琳. 拜耳法赤泥脱硫特性研究[D]. 昆明: 昆明理工大学, 2017. |
Zuo X L. Study on desulfurization performance of Bayer red mud[D]. Kunming: Kunming University of Science and Technology, 2017. | |
15 | 吴惊坤. 改性赤泥催化剂制备及其性能优化[D]. 济南: 山东大学, 2017. |
Wu J K. Preparation and optimization of modified red mud-based catalysts for selective catalytic reduction on NO x with NH3 [D]. Jinan: Shandong University, 2017. | |
16 | 李鹏飞. 反应条件对钙基吸收剂脱除NO x /SO2效果影响的实验研究[D]. 北京: 清华大学, 2009. |
Li P F. Experimental studies on the effects of reaction conditions on removal of NO x and SO2 by calcium sorbent[D]. Beijing: Tsinghua University, 2009. | |
17 | Chen G Q, Gao J H, Gao J M, et al. Simultaneous removal of SO2 and NO x by calcium hydroxide at low temperature: effect of SO2 absorption on NO2 removal[J]. Industrial & Engineering Chemistry Research, 2010, 49(23): 12140-12147. |
18 | Sakai M, Su C L, Sasaoka E. Simultaneous removal of SO x and NO x using slaked lime at low temperature[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5029-5033. |
19 | Li B, Wu H, Liu X L, et al. Simultaneous removal of SO2 and NO using a novel method with red mud as absorbent combined with O3 oxidation[J]. Journal of Hazardous Materials, 2020, 392: 122270. |
20 | 孙详彧. 赤泥与高矿化度矿井废水在烟气脱硫脱硝中应用的研究[D]. 烟台: 烟台大学, 2016. |
Sun X Y. Study on the application of red mud and highly mineralized mine wastewater in flue gas desulfurization and denitrification[D]. Yantai: Yantai University, 2016. | |
21 | Ren J, Chen J, Guo W, et al. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process[J]. Journal of Central South University, 2019, 26(2): 373-382. |
22 | 李建伟. 烧结法赤泥脱碱及碱回收工艺研究[D]. 郑州: 郑州大学, 2012. |
Li J W. The research on technology of red mud dealkalization and alkali recovery[D]. Zhengzhou: Zhengzhou University, 2012. | |
23 | 张晓闻. 常温钙基同时脱硫脱硝机理[D]. 北京: 清华大学, 2008. |
Zhang X W. Kinetics of simultaneous desulfurization and denitration by calcium based absorbent at low temperature[D]. Beijing: Tsinghua University, 2008. | |
24 | Bausach M, Pera-Titus M, Fite C, et al. Water-induced rearrangement of Ca(OH)2 (0001) surfaces reacted with SO2 [J]. AIChE Journal, 2006, 52(8): 2876-2886. |
25 | Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces[J]. Chemical Communications, 2013, 49(30): 3071-3094. |
26 | 李平, 赵越, 卢冠忠, 等. SO2对NO催化氧化过程的影响(Ⅱ)——载体γ-Al2O3与SO2的相互作用[J]. 高等学校化学学报, 2001, 22(12): 2072-2076. |
Li P, Zhao Y, Lu G Z, et al. Effect of SO2 on NO catalytic oxidation(Ⅱ): Interaction betweenγ-Al2O3 support and SO2 [J]. Chemical Research In Chinese Universities, 2001, 22(12): 2072-2076. | |
27 | 李平. SO2对负载型催化剂上NO氧化过程的影响[D]. 上海: 华东理工大学, 2003. |
Li P. Effect of SO2 on oxidation of NO on supported catalyst[D]. Shanghai: East China University of Science and Technology, 2003. | |
28 | de Wilde J, Marin G B. Investigation of simultaneous adsorption of SO2 and NO x on Na-γ-alumina with transient techniques[J]. Catalysis Today, 2000, 62(4): 319-328. |
29 | Zhang X Y, Zhuang G S, Chen J M, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles[J]. The Journal of Physical Chemistry. B, 2006, 110(25): 12588-12596. |
[1] | 钟屹, 周仕遇, 纠连朝, 李钰晓, 吴豪江, 周智勇. 废旧磷酸铁锂电池正极材料直接修复再生研究进展[J]. 化工学报, 2024, 75(S1): 1-13. |
[2] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[3] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
[4] | 周文博, 殷姜维, 张丹, 杨越, 于佳豪, 赵冰超. 热辐射加热下NaCl水溶液液滴蒸发过程的实验研究[J]. 化工学报, 2024, 75(S1): 85-94. |
[5] | 高文芳, 崔晗, 孙一冉, 彭佳晴, 朱睿, 夏然, 张馨予, 李佳奇, 王学良, 孙峙, 吕龙义. 典型金属生产过程的环境影响评价研究进展[J]. 化工学报, 2024, 75(9): 3056-3073. |
[6] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[7] | 陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923. |
[8] | 王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411. |
[9] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[10] | 赵非凡, 朱佳媚, 康洁, 檀亮, 段靖瑜. 三丁基(丙基)季![]() |
[11] | 孙琼, 杨富鑫, 谭厚章, 王晓坡. 低共熔溶剂捕集烟气CO2模拟研究[J]. 化工学报, 2024, 75(10): 3705-3717. |
[12] | 李泓宇, 刘祥坤, 施尧, 曹约强, 钱刚, 段学志. 颗粒分辨的乙炔选择性加氢固定床反应器数值模拟[J]. 化工学报, 2024, 75(10): 3610-3622. |
[13] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[14] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[15] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 123
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||