化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 283-291.DOI: 10.11949/0438-1157.20240462
徐英宇1(), 杨国强1(
), 彭璟1,2, 孙海宁1, 张志炳1
收稿日期:
2024-04-26
修回日期:
2024-05-30
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
杨国强
作者简介:
徐英宇(1997—),男,硕士研究生,MF20240036@smail.nju.edu.cn
基金资助:
Yingyu XU1(), Guoqiang YANG1(
), Jing PENG1,2, Haining SUN1, Zhibing ZHANG1
Received:
2024-04-26
Revised:
2024-05-30
Online:
2024-12-25
Published:
2024-12-17
Contact:
Guoqiang YANG
摘要:
深度处理煤化工废水含有的各种各样有机污染物,提高煤化工废水的回用率,具有重要的生态和经济意义。但有些污染物浓度很高,传统的废水生物处理工艺无法去除并且无法满足日益严格的废水排放标准。依据微界面强化反应器构建了煤化工污水微界面高级氧化反应体系的构效调控数学模型,明确了微界面强化技术对臭氧高级氧化的强化机制和强化效能。结果表明,相同条件下,气泡尺寸从10.0 mm减至0.1 mm,废水COD去除率从70.02%增至90.02%;相同的气量下,COD去除率达到70%时,微界面反应器较普通鼓泡反应器,其废水处理量可提高66.50%。为微界面高级氧化处理煤化工废水的放大和设计提供有力参考。
中图分类号:
徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291.
Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces[J]. CIESC Journal, 2024, 75(S1): 283-291.
时间/min | COD/(mg/L) | |
---|---|---|
35℃ | 45℃ | |
0 | 361.2 | 361.2 |
10 | 279.8 | 275.4 |
20 | 227.2 | 213.7 |
30 | 180.6 | 162.5 |
50 | 108.3 | 66.2 |
80 | 49.66 | 28.6 |
表1 不同温度条件下废水COD随时间的变化数据
Table 1 Data on COD of wastewater over time under different temperature conditions
时间/min | COD/(mg/L) | |
---|---|---|
35℃ | 45℃ | |
0 | 361.2 | 361.2 |
10 | 279.8 | 275.4 |
20 | 227.2 | 213.7 |
30 | 180.6 | 162.5 |
50 | 108.3 | 66.2 |
80 | 49.66 | 28.6 |
参数 | 数值 | 备注 |
---|---|---|
反应温度/℃ | 35 | |
入口压力/MPa(A) | 0.2 | |
表观气速/(m/s) | 0.012 | 工况入口 |
表观液速/(m/s) | 0.0022 | |
臭氧浓度/(g/m3) | 147.8 | 氧气转化率取10%① |
进口COD/(g/m3) | 361.2 | |
有效液位高度/mm | 8000 |
表2 构效模型参数
Table 2 Structural activity model parameters
参数 | 数值 | 备注 |
---|---|---|
反应温度/℃ | 35 | |
入口压力/MPa(A) | 0.2 | |
表观气速/(m/s) | 0.012 | 工况入口 |
表观液速/(m/s) | 0.0022 | |
臭氧浓度/(g/m3) | 147.8 | 氧气转化率取10%① |
进口COD/(g/m3) | 361.2 | |
有效液位高度/mm | 8000 |
图8 不同气泡尺寸下表观液速对COD去除率和O3利用率的影响
Fig.8 The effect of superficial liquid velocity on COD removal rate and O3 utilization rate under different bubble sizes
1 | Cui P Z, Qian Y, Yang S Y. New water treatment index system toward zero liquid discharge for sustainable coal chemical processes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1370-1378. |
2 | Ma H P, Wang H L, Tian C C, et al. An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge[J]. Journal of Cleaner Production, 2021, 291: 125842. |
3 | Ma H P, Wang H L, Tian C C, et al. An optimized design for zero liquid discharge from coal chemical industry: a case study in China[J]. Journal of Cleaner Production, 2021, 319: 128572. |
4 | Tóth A J, Fózer D, Mizsey P, et al. Physicochemical methods for process wastewater treatment: powerful tools for circular economy in the chemical industry[J]. Reviews in Chemical Engineering, 2023, 39(7): 1123-1151. |
5 | Li D D, Liu J Z, Wang S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. |
6 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
7 | Chu L B, Xing X H, Yu A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. |
8 | Shin W T, Mirmiran A, Yiacoumi S, et al. Ozonation using microbubbles formed by electric fields[J]. Separation and Purification Technology, 1999, 15(3): 271-282. |
9 | Li P, Tsuge H, Itoh K. Oxidation of dimethyl sulfoxide in aqueous solution using microbubbles[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8048-8053. |
10 | Liu J, Ke L J, Liu J, et al. Enhanced catalytic ozonation towards oxalic acid degradation over novel copper doped manganese oxide octahedral molecular sieves nanorods[J]. Journal of Hazardous Materials, 2019, 371: 42-52. |
11 | González-Labrada K, Richard R, Andriantsiferana C, et al. Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation[J]. Environmental Science and Pollution Research International, 2020, 27(2): 1246-1255. |
12 | Akhil D, Lakshmi D, Senthil Kumar P, et al. Occurrence and removal of antibiotics from industrial wastewater[J]. Environmental Chemistry Letters, 2021, 19(2): 1477-1507. |
13 | Waris R F, Farooqi I H. Different advanced oxidation processes for the abatement of pharmaceutical compounds[J]. International Journal of Environmental Science and Technology, 2024, 21(2): 2325-2338. |
14 | García-Abuín A, Gómez-Díaz D, Losada M, et al. Bubble column gas-liquid interfacial area in a polymer+surfactant+water system[J]. Chemical Engineering Science, 2012, 75: 334-341. |
15 | Patel S A, Daly J G, Bukur D B. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal, 1989, 35(6): 931-942. |
16 | Khuntia S, Majumder S K, Ghosh P. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2250-2258. |
17 | Qadafi M, Notodarmojo S, Zevi Y. Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes[J]. Science of the Total Environment, 2020, 747: 141540. |
18 | Tao X H, Liu Y F, Jiang H, et al. Microbubble generation with shear flow on large-area membrane for fine particle flotation[J]. Chemical Engineering and Processing - Process Intensification, 2019, 145: 107671. |
19 | Wang X Y, Shuai Y, Zhang H M, et al. Bubble breakup in a swirl-venturi microbubble generator[J]. Chemical Engineering Journal, 2021, 403: 126397. |
20 | Hogan L T, Horak E H, Ward J M, et al. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer[J]. ACS Nano, 2019, 13(11): 12743-12757. |
21 | Shangguan Y F, Yu S L, Gong C, et al. A review of microbubble and its applications in ozonation[J]. IOP Conference Series: Earth and Environmental Science, 2018, 128: 012149. |
22 | Wang J L, Hu H Z. Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate[J]. Journal of Materials Research and Technology, 2020, 9(5): 9498-9505. |
23 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
24 | Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
25 | 杨国强, 曾伟, 罗华勋, 等. 亚硫酸铵微界面强化氧化特性研究[J]. 化工学报, 2020, 71(11): 4918-4926. |
Yang G Q, Zeng W, Luo H X, et al. Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite[J]. CIESC Journal, 2020, 71(11): 4918-4926. | |
26 | 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014, 1034. |
Zhu Q S, Chen J F, Jiang H Y, et al. A review of catalytic ozonation: mechanisms and efficiency[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1010-1014, 1034. | |
27 | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
Tong Q, Dong Y M, Zhao K F, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
28 | Peng B, Bao W J, Wei L L, et al. Highly active OMS-2 for catalytic ozone decomposition under humid conditions[J]. Petroleum Science, 2019, 16(4): 912-919. |
29 | Bijan L, Mohseni M. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds[J]. Water Research, 2005, 39(16): 3763-3772. |
30 | 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120. |
Liu Y, He H P, Wu D L, et al. Heterogeneous catalytic ozonation reaction mechanism[J]. Progress in Chemistry, 2016, 28(7): 1112-1120. | |
31 | IUPAC.Oxygen and Ozone: Solubility Data Series[M]. Amsterdam: Elsevier, 2015: 465. |
32 | Nadezhdin A D. Mechanism of ozone decomposition in water. The role of termination[J]. Industrial & Engineering Chemistry Research, 1988, 27(4): 548-550. |
33 | Rischbieter E, Stein H, Schumpe A. Ozone solubilities in water and aqueous salt solutions[J]. Journal of Chemical & Engineering Data, 2000, 45(2): 338-340. |
34 | Levenspiel O. Chemical Reaction Engineering[M]. New York: John Wiley & Sons Inc., 1998:157. |
35 | Kazakis N A, Mouza A A, Paras S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. |
36 | 钱媛媛, 王永杰, 杨雪晶. 臭氧相关水处理工艺及其传质特征研究进展[J]. 化工进展, 2021, 40(S1): 411-425. |
Qian Y Y, Wang Y J, Yang X J. Application of ozone for water treatment and implication of mass transfer characteristics[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 411-425. | |
37 | 冯玥, 王璐, 陈泉源. 臭氧微气泡深度处理染料废水生化出水[J]. 环境工程学报, 2013, 7(12): 4653-4658. |
Feng Y, Wang L, Chen Q Y. Ozone microbubbles in tertiary purification of biological treatment effluent of dye-making wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4653-4658. | |
38 | Law D, Battaglia F, Heindel T J. Model validation for low and high superficial gas velocity bubble column flows[J]. Chemical Engineering Science, 2008, 63(18): 4605-4616. |
39 | Yin P B, Cao X W, Li Y H, et al. Experimental and numerical investigation on slug initiation and initial development behavior in hilly-terrain pipeline at a low superficial liquid velocity[J]. International Journal of Multiphase Flow, 2018, 101: 85-96. |
[1] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[2] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[3] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[4] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[5] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[6] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[7] | 王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328. |
[8] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[9] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[10] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[11] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[12] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[13] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[14] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[15] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||