化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 135-142.DOI: 10.11949/0438-1157.20240380
杨勇1,2(), 祖子轩1, 李煜坤1, 王东亮1,2, 范宗良1,2, 周怀荣1,2
收稿日期:
2024-04-08
修回日期:
2024-04-15
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
杨勇
作者简介:
杨勇(1986—),男,博士,副教授,yangy@lut.edu.cn
基金资助:
Yong YANG1,2(), Zixuan ZU1, Yukun LI1, Dongliang WANG1,2, Zongliang FAN1,2, Huairong ZHOU1,2
Received:
2024-04-08
Revised:
2024-04-15
Online:
2024-12-25
Published:
2024-12-17
Contact:
Yong YANG
摘要:
采用水平集两相流耦合组分传质微分方程对三维T型微通道内的CO2碱液吸收过程进行了数值模拟。分析了气泡形成及流动过程、相间传递及吸收特性,并重点探讨了进口气速、液速和碱液浓度对CO2化学吸收传质的影响。结果表明,在气速0.08 m/s、液速0.03 m/s时,单个气泡形成时间约为0.012 s,气泡移动速率几乎等于进口气速,展现气泡和液塞交替的泰勒流特征。CO2吸收溶解速率在气泡形成初始阶段溶解速率最大,随着气液相相互接触传质推动力逐渐降低,沿出口方向的气液两相界面上逐渐下降。气速0.05 m/s增加到0.1 m/s时,CO2吸收率从62.6%降低到34.8%,当液速从0.01 m/s增加到0.05 m/s时,CO2吸收率从18.5%提高48.4%。吸收剂浓度从50 mol/m3增加到250 mol/m3,吸收率由50.8%提高到79.3%。
中图分类号:
杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142.
Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels[J]. CIESC Journal, 2024, 75(S1): 135-142.
图3 微通道内气速0.08 m/s、液速0.03 m/s时CO2吸收速率和气相CO2浓度分布的演变
Fig.3 Evolution of CO2 absorption rate and gas CO2 concentration in microchannel at Ug=0.08 m/s and Ul =0.03 m/s
1 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
Li H K, Dang C X, Yang G X, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
2 | Zhang Q, Liu J F, Wang G, et al. A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability[J]. Applied Energy, 2024, 363: 123065. |
3 | Jin B, Wang R Y, Fu D T, et al. Chemical looping CO2 capture and in situ conversion as a promising platform for green and low-carbon industry transition: review and perspective[J]. Carbon Capture Science & Technology, 2024, 10: 100169. |
4 | Yusuf N, Almomani F, Qiblawey H. Catalytic CO2 conversion to C1 value-added products: review on latest catalytic and process developments[J]. Fuel, 2023, 345: 128178. |
5 | Zanfir M, Gavriilidis A, Wille C, et al. Carbon dioxide absorption in a falling film microstructured reactor: experiments and modeling[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1742-1751. |
6 | 范晓丹. 鼓泡反应器中氢氧化钠吸收二氧化碳的数值模拟[D]. 沈阳: 东北大学, 2014. |
Fan X D. Numerical simulation of sodium hydroxide absorbing carbon dioxide gas in bubble column[D]. Shenyang: Northeastern University, 2014. | |
7 | Zhou C Q, Ni J H, Chen H Q, et al. Harnessing electrochemical pH gradient for direct air capture with hydrogen and oxygen by-products in a calcium-based loop[J]. Sustainable Energy & Fuels, 2021, 5(17): 4355-4367. |
8 | Hu G P, Nicholas N J, Smith K H, et al. Carbon dioxide absorption into promoted potassium carbonate solutions: a review[J]. International Journal of Greenhouse Gas Control, 2016, 53: 28-40. |
9 | 庞子凡, 蒋斌, 朱春英, 等. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133. |
Pang Z F, Jiang B, Zhu C Y, et al. Progress of absorption, mass transfer and resource utilization of CO2 in microchannels[J]. CIESC Journal, 2022, 73(1): 122-133. | |
10 | Zhang Y, Zhu C, Fu T, et al. CO2 absorption and desorption performance by ChCl-MEA-PZ deep eutectic solvent aqueous solutions[J]. Separation and Purification Technology, 2024, 330: 1252-1275. |
11 | Makarem M A, Kiani M R, Farsi M, et al. CFD simulation of CO2 capture in a microchannel by aqueous mixtures of MEA and[Bmim][BF4] modified with TiO2 nanoparticles[J]. International Journal of Thermophysics, 2021, 42(4): 57. |
12 | Lin X Y, Yan S, Zhou B Y, et al. Highly efficient synthesis of polyvinyl butyral (PVB) using a membrane dispersion microreactor system and recycling reaction technology[J]. Green Chemistry, 2017, 19(9): 2155-2163. |
13 | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
Yuan L, Cong H F, Li X G. Research progress on gas-liquid flow and mass transfer characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. | |
14 | 钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展[J]. 化工进展, 2019, 38(4): 1624-1633. |
Qian J Y, Li X J, Wu Z, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1624-1633. | |
15 | 陈彦松, 阮达, 刘渊博, 等. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
Chen Y S, Ruan D, Liu Y B, et al. Topology optimization and performance research of microchannel heat exchangers[J]. CIESC Journal, 2024, 75(3): 823-835. | |
16 | 王俊男, 何呈祥, 王忠东, 等. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
Wang J N, He C X, Wang Z D, et al. Numerical simulation of homogeneous mixing in T-junction micromixers[J]. CIESC Journal, 2024, 75(1): 242-254. | |
17 | 马学虎, 梁倩卿, 王凯, 等. 基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(4): 1229-1246. |
Ma X H, Liang Q Q, Wang K, et al. Progress of CO2 absorption process in micro-absorbers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1229-1246. | |
18 | 张璠玢, 朱春英, 付涛涛, 等. 微通道内离子液体/乙醇混合溶液吸收CO2的传质特性[J]. 化工学报, 2017, 68(2): 601-611. |
Zhang Fanfen Zhu C Y, Fu T T, et al. Mass transfer performance of CO2 absorption into ionic liquid/ethanol mixture in microchannel[J]. CIESC Journal, 2017, 68(2): 601-611. | |
19 | Jasour A, Alizadeh R, Ahmadian H. Modeling of carbon dioxide and hydrogen sulfide pollutants absorption in wetted-wire columns with alkanolamines[J]. Chemical Product and Process Modeling, 2023, 18(4): 591-609. |
20 | Dong R, Chu D, Sun Q, et al. Numerical simulation of the mass transfer process of CO2 absorption by different solutions in a microchannel[J]. The Canadian Journal of Chemical Engineering, 2020, 98(12): 2648-2664. |
21 | Makarem M A, Farsi M, Rahimpour M R. CFD simulation of CO2 removal from hydrogen rich stream in a microchannel[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19749-19757. |
22 | Makarem M A, Kiani M R, Abbaspour M, et al. Nanoparticle-enhanced hydrogen separation from CO2 in cylindrical and cubic microchannels: a 3D computational fluid dynamics simulation[J]. International Journal of Hydrogen Energy, 2023, 48(32): 12045-12055. |
23 | Jiang B, He C, Zhan W, et al. Mass transfer of chemical absorption of CO2/N2 mixed gas in a microchannel[J]. Chemical Engineering Science, 2023, 280: 1189-1196. |
24 | Göppert U, Maurer G. Vapor-liquid equilibria in aqueous solutions of ammonia and carbon dioxide at temperatures between 333 and 393 K and pressures up to 7 MPa[J]. Fluid Phase Equilibria, 1988, 41(1/2): 153-185. |
25 | Tsonopoulos C, Coulson D M, Inman L B. Ionization constants of water pollutants[J]. Journal of Chemical & Engineering Data, 1976, 21(2): 190-193. |
26 | Hikita H, Asai S, Ishikawa H, et al. Diffusivities of carbon dioxide in aqueous mixed electrolyte solutions[J]. The Chemical Engineering Journal, 1979, 17(1): 77-80. |
27 | Versteeg G F, Van Swaaij W P M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions[J]. Journal of Chemical & Engineering Data, 1988, 33(1): 29-34. |
28 | 宋存义, 周向. 捕集低浓度二氧化碳的化学吸收工艺及其综合比较[J]. 环境工程学报, 2012, 6(1): 1-8. |
Song C Y, Zhou X. Chemical absorption processes for low concentration CO2 and comprehensive comparison[J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 1-8. | |
29 | Sun W C, Liu Y C, He K, et al. The phase distribution of gas-liquid two-phase flow in microimpacting T-junctions with different branch channel diameters[J]. Chemical Engineering Journal, 2018, 333: 34-42. |
30 | Haase S, Murzin D Y, Salmi T. Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow[J]. Chemical Engineering Research and Design, 2016, 113: 304-329.. |
31 | Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4]aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[3] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[4] | 赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282. |
[5] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[6] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[7] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
[8] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[9] | 周文博, 殷姜维, 张丹, 杨越, 于佳豪, 赵冰超. 热辐射加热下NaCl水溶液液滴蒸发过程的实验研究[J]. 化工学报, 2024, 75(S1): 85-94. |
[10] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[11] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[12] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[13] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[14] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[15] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||