化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1742-1753.DOI: 10.11949/0438-1157.20240945
徐东菱1(
), 马跃1,2, 龚露1,2, 马桂丽1, 王金可1, 郭丰志1, 王浩伦1, 李思佳1, 李术元1,2, 岳长涛1,2(
)
收稿日期:2024-08-22
修回日期:2025-01-08
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
岳长涛
作者简介:徐东菱(1998—),女,博士研究生,xdl9807@163.com
Dongling XU1(
), Yue MA1,2, Lu GONG1,2, Guili MA1, Jinke WANG1, Fengzhi GUO1, Haolun WANG1, Sijia LI1, Shuyuan LI1,2, Changtao YUE1,2(
)
Received:2024-08-22
Revised:2025-01-08
Online:2025-04-25
Published:2025-05-12
Contact:
Changtao YUE
摘要:
采用自主设计的热重分析天平研究油页岩和烟煤混合快速热解过程,并结合SEM-EDS分析其半焦的形貌特点和元素组成。同时通过自制的固定流化床反应器探究油页岩和烟煤混合热解的产物分布规律。热重结果表明:混合快速热解过程中,油页岩占比20%(质量)时,协同效应最明显,有机物热解过程中的最大热解速率增幅高达49.18%;半焦形貌同时呈现团块状孔隙结构和层状纹理结构,微区表面钠、铝、钙元素含量出现不同程度的变化。固定床热解过程进一步揭示了油页岩与烟煤的混合热解协同机理,油页岩中的无机矿物质可促进烟煤中的羧基脱出,显著降低混合热解油中的酚、醇、芳香烃含量,增加长链脂肪烃收率,提高油相收率并改善油品质量。同时油页岩中的活性H自由基提高了混合热解气相产物中的CH4的轻烃收率,增大了热解气回收利用价值。
中图分类号:
徐东菱, 马跃, 龚露, 马桂丽, 王金可, 郭丰志, 王浩伦, 李思佳, 李术元, 岳长涛. 油页岩与烟煤混合流化热解实验研究[J]. 化工学报, 2025, 76(4): 1742-1753.
Dongling XU, Yue MA, Lu GONG, Guili MA, Jinke WANG, Fengzhi GUO, Haolun WANG, Sijia LI, Shuyuan LI, Changtao YUE. Co-pyrolysis study of oil shale and bituminous coal in fixed fluidized bed reactor[J]. CIESC Journal, 2025, 76(4): 1742-1753.
| 样品 | 工业分析/ %(收到基,质量) | 元素分析/ %(干基,质量) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 表面水 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
| 油页岩 | 3.01 | 39.39 | 33.57 | 24.03 | 49.09 | 5.06 | 12.34 | 1.51 | 0.77 |
| 烟煤 | 6.97 | 5.55 | 35.40 | 52.08 | 66.96 | 5.15 | 24.66 | 1.89 | 0.47 |
表1 油页岩和烟煤的工业分析和元素分析结果
Table 1 The proximate analysis and ultimate analysis of oil shale and bituminous coal
| 样品 | 工业分析/ %(收到基,质量) | 元素分析/ %(干基,质量) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 表面水 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
| 油页岩 | 3.01 | 39.39 | 33.57 | 24.03 | 49.09 | 5.06 | 12.34 | 1.51 | 0.77 |
| 烟煤 | 6.97 | 5.55 | 35.40 | 52.08 | 66.96 | 5.15 | 24.66 | 1.89 | 0.47 |
| 样品 | 成分/%(质量) | |||||||
|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | CaO | Fe2O3 | SO3 | Na2O | K2O | MgO | |
| 油页岩 | 74.61 | 6.57 | 6.41 | 4.40 | 2.93 | 2.53 | 0.59 | 0.45 |
| 烟煤 | 20.59 | 18.82 | 13.01 | 7.27 | 20.90 | 15.18 | 0.61 | 1.68 |
表2 油页岩和烟煤的灰成分分析结果
Table 2 XRF composition analysis of oil shale and bituminous coal
| 样品 | 成分/%(质量) | |||||||
|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | CaO | Fe2O3 | SO3 | Na2O | K2O | MgO | |
| 油页岩 | 74.61 | 6.57 | 6.41 | 4.40 | 2.93 | 2.53 | 0.59 | 0.45 |
| 烟煤 | 20.59 | 18.82 | 13.01 | 7.27 | 20.90 | 15.18 | 0.61 | 1.68 |
| 样品 | 含油率/% | 水分/% | 半焦/% | 气体/% |
|---|---|---|---|---|
| 油页岩 | 16.33 | 7.80 | 68.26 | 7.61 |
| 烟煤 | 6.54 | 16.00 | 65.64 | 11.22 |
表3 油页岩和烟煤的铝甑实验结果(收到基,质量分数)
Table 3 Fischer assay analysis results of oil shale and bituminous coal
| 样品 | 含油率/% | 水分/% | 半焦/% | 气体/% |
|---|---|---|---|---|
| 油页岩 | 16.33 | 7.80 | 68.26 | 7.61 |
| 烟煤 | 6.54 | 16.00 | 65.64 | 11.22 |
| 样品 | T0/℃ | Tmax/℃ | Tf/℃ | Rmax/(%/℃) |
|---|---|---|---|---|
| M | 424 | 520 | 607 | 0.1094 |
| Y-20% | 461 | 547 | 600 | 0.1632 |
| Y-40% | 461 | 551 | 600 | 0.1748 |
| Y-60% | 468 | 576 | 601 | 0.2128 |
| Y-80% | 472 | 539 | 598 | 0.2446 |
| Y-100% | 476 | 552 | 593 | 0.2632 |
表4 油页岩和烟煤及各混合样品热解特性参数
Table 4 Pyrolysis parameters of samples with different blending ratios
| 样品 | T0/℃ | Tmax/℃ | Tf/℃ | Rmax/(%/℃) |
|---|---|---|---|---|
| M | 424 | 520 | 607 | 0.1094 |
| Y-20% | 461 | 547 | 600 | 0.1632 |
| Y-40% | 461 | 551 | 600 | 0.1748 |
| Y-60% | 468 | 576 | 601 | 0.2128 |
| Y-80% | 472 | 539 | 598 | 0.2446 |
| Y-100% | 476 | 552 | 593 | 0.2632 |
| 样品 | C/% | O/% | Na/% | Al/% | Si/% | Ca/% |
|---|---|---|---|---|---|---|
| M | 85.50 | 10.30 | 1.79 | 0.63 | 0.62 | 1.16 |
| Y-20% | 16.65 | 38.35 | 1.88 | 2.02 | 12.52 | 28.58 |
| Y-40% | 48.76 | 20.73 | 1.08 | 2.29 | 19.12 | 8.02 |
| Y-60% | 31.16 | 30.54 | 1.00 | 2.96 | 27.80 | 6.54 |
| Y-80% | 48.57 | 28.73 | 0.63 | 1.74 | 14.83 | 5.50 |
| Y-100% | 19.41 | 39.86 | 0.74 | 1.90 | 19.02 | 19.07 |
表5 油页岩和烟煤各混合样品半焦表面微区的元素成分(质量分数)
Table 5 Element composition in the semi-coke local surface of samples with different blending ratios
| 样品 | C/% | O/% | Na/% | Al/% | Si/% | Ca/% |
|---|---|---|---|---|---|---|
| M | 85.50 | 10.30 | 1.79 | 0.63 | 0.62 | 1.16 |
| Y-20% | 16.65 | 38.35 | 1.88 | 2.02 | 12.52 | 28.58 |
| Y-40% | 48.76 | 20.73 | 1.08 | 2.29 | 19.12 | 8.02 |
| Y-60% | 31.16 | 30.54 | 1.00 | 2.96 | 27.80 | 6.54 |
| Y-80% | 48.57 | 28.73 | 0.63 | 1.74 | 14.83 | 5.50 |
| Y-100% | 19.41 | 39.86 | 0.74 | 1.90 | 19.02 | 19.07 |
| 样品 | 组分/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C5H12 | C5H10 | C n H2n+2(n≤5) | C n H2n (n≤5) | C n H2n+2/C n H2n (n≤5) | |
| M | 9.06 | 3.20 | 1.25 | 1.26 | 1.10 | 0.43 | 0.61 | 0.22 | 0.10 | 14.17 | 3.06 | 4.63 |
| Y-20% | 10.05 | 3.48 | 1.52 | 1.31 | 1.26 | 0.41 | 0.48 | 0.15 | 0.25 | 15.40 | 3.51 | 4.39 |
| Y-40% | 11.06 | 4.31 | 2.08 | 1.64 | 1.83 | 0.72 | 1.19 | 0.23 | 0.61 | 17.96 | 5.71 | 3.15 |
| Y-60% | 11.28 | 5.25 | 2.68 | 2.06 | 2.34 | 0.78 | 1.51 | 0.36 | 0.78 | 19.73 | 7.31 | 2.70 |
| Y-80% | 13.19 | 6.08 | 3.49 | 2.29 | 2.88 | 0.80 | 1.43 | 0.31 | 0.73 | 22.67 | 8.53 | 2.66 |
| Y-100% | 13.51 | 7.39 | 3.90 | 2.88 | 3.46 | 1.03 | 1.80 | 0.37 | 0.92 | 25.18 | 10.08 | 2.50 |
表6 掺混比对油页岩和烟煤及各混合样品流化干馏热解气中有机组分的影响
Table 6 Changes in organic components in gaseous products from the co-pyrolysis of samples with different blending ratios
| 样品 | 组分/% | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C5H12 | C5H10 | C n H2n+2(n≤5) | C n H2n (n≤5) | C n H2n+2/C n H2n (n≤5) | |
| M | 9.06 | 3.20 | 1.25 | 1.26 | 1.10 | 0.43 | 0.61 | 0.22 | 0.10 | 14.17 | 3.06 | 4.63 |
| Y-20% | 10.05 | 3.48 | 1.52 | 1.31 | 1.26 | 0.41 | 0.48 | 0.15 | 0.25 | 15.40 | 3.51 | 4.39 |
| Y-40% | 11.06 | 4.31 | 2.08 | 1.64 | 1.83 | 0.72 | 1.19 | 0.23 | 0.61 | 17.96 | 5.71 | 3.15 |
| Y-60% | 11.28 | 5.25 | 2.68 | 2.06 | 2.34 | 0.78 | 1.51 | 0.36 | 0.78 | 19.73 | 7.31 | 2.70 |
| Y-80% | 13.19 | 6.08 | 3.49 | 2.29 | 2.88 | 0.80 | 1.43 | 0.31 | 0.73 | 22.67 | 8.53 | 2.66 |
| Y-100% | 13.51 | 7.39 | 3.90 | 2.88 | 3.46 | 1.03 | 1.80 | 0.37 | 0.92 | 25.18 | 10.08 | 2.50 |
| 1 | 张玉卓. 中国煤炭液化技术发展前景[J]. 煤炭科学技术, 2006, 34(1): 19-22. |
| Zhang Y Z. Development outlook of China coal liquefaction technology[J]. Coal Science and Technology, 2006, 34(1): 19-22. | |
| 2 | 李小炯. 我国煤炭资源清洁高效利用现状及对策建议[J]. 煤炭经济研究, 2019, 39(1): 71-75. |
| Li X J. Status and countermeasures of clean and efficient utilization of coal resources in China[J]. Coal Economic Research, 2019, 39(1): 71-75. | |
| 3 | 钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006, 36(6): 877-887. |
| Qian J L, Wang J Q, Li S Y. World oil shale utilization and its future[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 877-887. | |
| 4 | 刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6): 869-876. |
| Liu Z J, Dong Q S, Ye S Q, et al. The situation of oil shale resources in China[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 869-876. | |
| 5 | 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15. |
| Liu F, Cao W J, Zhang J M, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1-15. | |
| 6 | 陆浩, 王莹莹, 潘颢丹, 等. 油页岩热解技术研究进展[J]. 应用化工, 2018, 47(9): 2031-2036. |
| Lu H, Wang Y Y, Pan H D, et al. Research progress of oil shale pyrolysis technology[J]. Applied Chemical Industry, 2018, 47(9): 2031-2036. | |
| 7 | Cui S, Yang T H, Zhai Y M, et al. Investigation on the characteristics and interaction of co-pyrolysis of oil shale and peanut shell[J]. Fuel, 2023, 340: 127502. |
| 8 | Chen B, Han X X, Tong J H, et al. Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed[J]. Energy Conversion and Management, 2020, 205: 112356. |
| 9 | Zhai Y M, Yang T H, Zhang Y, et al. Co-pyrolysis characteristics of raw/torrefied corn stalk and oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171: 105967. |
| 10 | Yang Q C, Zhang X, Xu S T, et al. Low-temperature co-current oxidizing pyrolysis of oil shale: study on the physicochemical properties, reactivity and exothermic characters of semi-coke as heat generation donor[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110726. |
| 11 | Wang B, Liu N, Wang S S, et al. Study on co-pyrolysis of coal and biomass and process simulation optimization[J]. Sustainability, 2023, 15(21): 15412. |
| 12 | Yin N, Song Y H, Wu L, et al. Analysis of tar and pyrolysis gas from low-rank coal pyrolysis assisted by apple branch[J]. 2023, 15(4): 043102. |
| 13 | 张旭, 王利斌, 裴贤丰, 等. 煤热解提高焦油产率及品质关键技术与研究进展[J]. 煤炭科学技术, 2019, 47(3): 227-233. |
| Zhang X, Wang L B, Pei X F, et al. Research progress and key technology of improving coal tar yield and quality by coal pyrolysis[J]. Coal Science and Technology, 2019, 47(3): 227-233. | |
| 14 | Wu L, Liu J, Xu P, et al. Biomass hydrogen donor assisted microwave pyrolysis of low-rank pulverized coal: optimization, product upgrade and synergistic mechanism[J]. Waste Management, 2022, 143: 177-185. |
| 15 | 石勇, 赖登国, 陈兆辉, 等. 神木烟煤与桦甸油页岩的共热解特性[J]. 过程工程学报, 2016, 16(4): 634-638. |
| Shi Y, Lai D G, Chen Z H, et al. Co-pyrolysis characteristics of Shenmu bituminous coal and Huadian oil shale[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 634-638. | |
| 16 | Lu Y, Wang Y, Zhang J, et al. Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics[J]. Energy, 2020, 200: 117529. |
| 17 | He D, Guan J, Hu H, et al. Pyrolysis and co-pyrolysis of Chinese Longkou oil shale and Mongolian huolinhe lignite[J]. Oil Shale, 2015, 32(2): 151. |
| 18 | Miao Z Y, Wu G G, Li P, et al. Investigation into co-pyrolysis characteristics of oil shale and coal[J]. International Journal of Mining Science and Technology, 2012, 22(2): 245-249. |
| 19 | Dwivedi K K, Shrivastav P, Karmakar M K, et al. A comparative study on pyrolysis characteristics of bituminous coal and low-rank coal using thermogravimetric analysis (TGA)[J]. International Journal of Coal Preparation and Utilization, 2022, 42(1): 1-11. |
| 20 | Hua Z J, Wang Q, Jia C X, et al. Pyrolysis kinetics of a Wangqing oil shale using thermogravimetric analysis[J]. Energy Science & Engineering, 2019, 7(3): 912-920. |
| 21 | Li Y Y, Li J, Zhou S X, et al. A review on thermogravimetric analysis-based analyses of the pyrolysis kinetics of oil shale and coal[J]. Energy Science & Engineering, 2024, 12(1): 329-355. |
| 22 | Sabat G, Gouda N, Panda A K. Effect of coal grade and heating rate on the thermal degradation behavior, kinetics, and thermodynamics of pyrolysis of low-rank coal[J]. International Journal of Coal Preparation and Utilization, 2023, 43(6): 1057-1075. |
| 23 | Chen B, Han X X, Mu M, et al. Studies of the co-pyrolysis of oil shale and wheat straw[J]. Energy & Fuels, 2017, 31(7): 6941-6950. |
| 24 | Mu M, Han X X, Wang S, et al. Interactions of oil shale and hydrogen-rich wastes during co-pyrolysis: co-pyrolysis of oil shale and waste tire[J]. Energy & Fuels, 2023, 37(6): 4222-4232. |
| 25 | 王擎, 关京, 徐芳. 油页岩热解特性及其甲烷释放规律研究[J]. 化工学报, 2018, 69(10): 4362-4370. |
| Wang Q, Guan J, Xu F. Pyrolysis characteristics of oil shale and analysis of methane evolution mechanism[J]. CIESC Journal, 2018, 69(10): 4362-4370. | |
| 26 | Song Y H, Lei S M, Li J C, et al. In situ FT-IR analysis of coke formation mechanism during co-pyrolysis of low-rank coal and direct coal liquefaction residue[J]. Renewable Energy, 2021, 179: 2048-2062. |
| 27 | Wang W, Lemaire R, Bensakhria A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105479. |
| 28 | Liu X C, Song H, Han K S, et al. Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale[J]. Energy, 2023, 285: 128678. |
| 29 | Senneca O, Cerciello F, Russo C, et al. Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide[J]. Fuel, 2020, 271: 117656. |
| 30 | Zhai Y M, Zhu Y M, Cui S, et al. Study on the co-pyrolysis of oil shale and corn stalk: pyrolysis characteristics, kinetic and gaseous product analysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105456. |
| 31 | Chen Y Q, Liu B, Yang H P, et al. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity[J]. Fuel, 2014, 137: 41-49. |
| 32 | Safar M, Lin B J, Chen W H, et al. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction[J]. Applied Energy, 2019, 235: 346-355. |
| 33 | Scaccia S. TG–FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 95-102. |
| 34 | Jiang Y, Zong P J, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: a study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179: 72-80. |
| 35 | Chang Z B, Chu M, Zhang C, et al. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 269-276. |
| 36 | Iliopoulou E F, Stefanidis S, Kalogiannis K, et al. Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours[J]. Green Chemistry, 2014, 16(2): 662-674. |
| 37 | Lin B C, Huang Q X, Chi Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality[J]. Fuel Processing Technology, 2018, 177: 275-282. |
| 38 | Xia Z B, Yang H, Sun J F, et al. Co-pyrolysis of waste polyvinyl chloride and oil-based drilling cuttings: pyrolysis process and product characteristics analysis[J]. Journal of Cleaner Production, 2021, 318: 128521. |
| 39 | Zhang Y M, Zhao M X, Linghu R X, et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer[J]. Carbon Resources Conversion, 2019, 2(3): 217-224. |
| 40 | Ma C, Zhao Y Z, Lang T T, et al. Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars[J]. Energy, 2023, 277: 127524. |
| 41 | Yang Z Q, Wu Y Q, Zhang Z S, et al. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 384-398. |
| 42 | Kumari A, Kumar S. Pyrolytic degradation of polyethylene in autoclave under high pressure to obtain fuel[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 298-302. |
| [1] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
| [2] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
| [3] | 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
| [4] | 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392. |
| [5] | 朱新宇, 张光义, 张建伟, 温宏炎, 李运甲, 张建岭, 许光文. 醇提中药渣与废弃活性焦共燃特性及动力学分析[J]. 化工学报, 2021, 72(2): 1116-1124. |
| [6] | 周一帆, 姚丛雪, 王靖文, 郭文文, 宋磊, 牧小卫, 胡源. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194. |
| [7] | 李剑, 蒲舸, 陈家善, 刘啟文. 常见钠盐的高温挥发特性及热解机理[J]. 化工学报, 2020, 71(8): 3452-3459. |
| [8] | 高鹤,姜星宇,刘雪景,岳君容,曾玺,韩振南,许光文. 油页岩矿物质催化半焦燃烧特性及机理[J]. 化工学报, 2020, 71(12): 5568-5577. |
| [9] | 魏利平,江国栋,古玉宽,滕海鹏. 五彩湾煤和吐鲁番煤热解动力学模型评估与应用[J]. 化工学报, 2019, 70(S2): 275-286. |
| [10] | 黄逸群, 张缦, 苗苗, 邓博宇, 蔡晋, 吴玉新, 吕俊复, 金燕, 杨海瑞. 油页岩半焦燃烧动力学研究[J]. 化工学报, 2019, 70(8): 3033-3039. |
| [11] | 沈建华, 宋琦, 姚兵, 黄正梁, 王靖岱, 阳永荣. 钴离子对阳离子交换树脂氧化裂解反应的催化作用[J]. 化工学报, 2019, 70(7): 2548-2555. |
| [12] | 张锦萍, 王长安, 贾晓威, 王鹏乾, 车得福. 半焦-烟煤混燃特性及动力学分析[J]. 化工学报, 2018, 69(8): 3611-3618. |
| [13] | 张志丰, 王亦飞, 朱龙雏, 李季林, 王辅臣, 于广锁. 基于铁基载氧体的无烟煤化学链燃烧过程中硫分布特性[J]. 化工学报, 2018, 69(4): 1578-1585. |
| [14] | 陆梦科, 匡吴奇, 钱刚, 段学志, 周兴贵, Chen De. 美国绿河油页岩中沥青热解特征及动力学[J]. 化工学报, 2018, 69(11): 4746-4753. |
| [15] | 王擎, 关京, 徐芳. 油页岩热解特性及其甲烷释放规律研究[J]. 化工学报, 2018, 69(10): 4362-4370. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号