化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5568-5577.DOI: 10.11949/0438-1157.20200655
高鹤1(),姜星宇1,刘雪景1,岳君容2,曾玺2,韩振南1(),许光文1,2()
收稿日期:
2020-05-27
修回日期:
2020-07-16
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
韩振南,许光文
作者简介:
高鹤(1994—),男,硕士研究生,基金资助:
GAO He1(),JIANG Xingyu1,LIU Xuejing1,YUE Junrong2,ZENG Xi2,HAN Zhennan1(),XU Guangwen1,2()
Received:
2020-05-27
Revised:
2020-07-16
Online:
2020-12-05
Published:
2020-12-05
Contact:
HAN Zhennan,XU Guangwen
摘要:
利用微型流化床反应分析仪(MFBRA)研究了油页岩矿物质催化半焦燃烧特性,重点考察了半焦内部矿物质和外部页岩灰床料对半焦燃烧的催化作用,揭示了流化床反应器中半焦燃烧过程和机理。结果表明:内部矿物质和外部床料对半焦燃烧均具有明显催化作用,而两者共同催化效果最为显著。矿物质中CaO和Fe2O3对半焦燃烧具有催化活性,CaO催化作用强于Fe2O3。油页岩半焦燃烧反应活化能在60.41~78.97 kJ/mol之间,矿物质的催化作用会明显降低反应活化能。流化床反应器中,矿物质对半焦燃烧的催化作用主要表现在四个反应,即:挥发分裂解和燃烧、半焦表面炭燃烧、半焦内部炭燃烧以及一氧化碳燃烧。
中图分类号:
高鹤,姜星宇,刘雪景,岳君容,曾玺,韩振南,许光文. 油页岩矿物质催化半焦燃烧特性及机理[J]. 化工学报, 2020, 71(12): 5568-5577.
GAO He,JIANG Xingyu,LIU Xuejing,YUE Junrong,ZENG Xi,HAN Zhennan,XU Guangwen. Characteristics and mechanism of catalytic effect of inner minerals on combustion of oil shale coke[J]. CIESC Journal, 2020, 71(12): 5568-5577.
Sample | Proximate analysis①/ % (mass) | Ultimate analysis②/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | H/C | |
oil shale | 6 | 80.37 | 13.16 | 0.47 | 9.38 | 1.45 | 0.97 | 0.43 | 0.155 |
char | 1.46 | 93.39 | 4.62 | 0.41 | 4.38 | 0.23 | 0.46 | 0.53 | 0.053 |
表1 油页岩及半焦的工业分析与元素分析
Table 1 Results of proximate and ultimate analysis of oil shale and char
Sample | Proximate analysis①/ % (mass) | Ultimate analysis②/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | H/C | |
oil shale | 6 | 80.37 | 13.16 | 0.47 | 9.38 | 1.45 | 0.97 | 0.43 | 0.155 |
char | 1.46 | 93.39 | 4.62 | 0.41 | 4.38 | 0.23 | 0.46 | 0.53 | 0.053 |
Sample | Compound content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
CaO | Fe2O3 | Na2O | Al2O3 | MgO | SiO2 | Others | |
oil shale ash | 0.971 | 8.617 | 0.57 | 22.484 | 1.433 | 61.326 | 4.599 |
CaO/SiO2 | 15.393 | 0.268 | 0.03 | 0.08 | 2.49 | 80.744 | 0.995 |
Fe2O3/SiO2 | 0.642 | 14.58 | 0.02 | 0.649 | 1.095 | 81.823 | 1.191 |
表2 反应床料XRF分析
Table 2 XRF analysis of bed material
Sample | Compound content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
CaO | Fe2O3 | Na2O | Al2O3 | MgO | SiO2 | Others | |
oil shale ash | 0.971 | 8.617 | 0.57 | 22.484 | 1.433 | 61.326 | 4.599 |
CaO/SiO2 | 15.393 | 0.268 | 0.03 | 0.08 | 2.49 | 80.744 | 0.995 |
Fe2O3/SiO2 | 0.642 | 14.58 | 0.02 | 0.649 | 1.095 | 81.823 | 1.191 |
Experiment | Sample | Bed material | Research object |
---|---|---|---|
De-Char/SiO2 | De-Char | SiO2 | control group |
Char/SiO2 | Char | SiO2 | catalysis of minerals inside char |
De-Char/Ash | De-Char | oil shale ash | catalysis of bed material outside char |
Char/Ash | Char | oil shale ash | synergistic catalysis |
Char/Fe2O3 | Char | Fe2O3/SiO2 | catalysis of Fe2O3 |
Char/CaO | Char | CaO/SiO2 | catalysis of CaO |
表3 半焦燃烧实验设计
Table 3 Experimental design of char combustion
Experiment | Sample | Bed material | Research object |
---|---|---|---|
De-Char/SiO2 | De-Char | SiO2 | control group |
Char/SiO2 | Char | SiO2 | catalysis of minerals inside char |
De-Char/Ash | De-Char | oil shale ash | catalysis of bed material outside char |
Char/Ash | Char | oil shale ash | synergistic catalysis |
Char/Fe2O3 | Char | Fe2O3/SiO2 | catalysis of Fe2O3 |
Char/CaO | Char | CaO/SiO2 | catalysis of CaO |
1 | BP p.l.c.. Statistical Review of World Energy[M]. 68th ed. London: BP p.l.c., 2019: 2-6. |
2 | Geology and Resources of Some World Oil Shale Deposits: Scientific Investigations Report 2005[R]. US: Department of the Interior, 2006. |
3 | 钱家麟, 王剑秋, 李术元.世界油页岩综述[J].中国能源, 2006, 8: 16-19. |
Qian J L, Wang J Q, Li S Y. Review of world oil shale[J]. Energy of China, 2006, 8: 16-19. | |
4 | Li Q, Han X, Liu Q, et al. Thermal decomposition of Huadian oil shale(1): Critical organic intennediates[J]. Fuel, 2014, 121(2): 109-116. |
5 | Kahru A, Põllumaa L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review[J]. Oil Shale, 2006, 23: 53-93. |
6 | Han X X, Jiang X M, Cui Z G. Study of the combustion mechanism of oil shale semicoke in a thermogravimetric analyzer[J]. Therm. Anal. Calorim. 2008, 92: 595-600. |
7 | Lai D G, Zhang G Y, Xu G W. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals[J]. Fuel Processing Technology, 2017, 158: 191-198. |
8 | Lai D G, Shi Y, Geng S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173: 138-145. |
9 | Lai D G, Chen Z H, Shi Y, et al. Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals[J]. Fuel, 2015, 159: 943-951. |
10 | Zhou H R, Zeng S, Yang S Y, et al. Modeling and analysis of oil shale refinery process with the indirectly heated moving bed[J]. Carbon Resources Conversion, 2018, 1(3): 260-265. |
11 | AItouche A, Bouamama B O. Fault tolerant control with respect to actuator failures application to steam generator process [J]. Computer Aided Chemical Engineering, 2018, 44: 1471-1476. |
12 | Weiss H J. Lurgi ruhrgas process in the retorting of oil shale[J]. Energy, 1983, 8: 17-18. |
13 | He J L, Qing W. Development and application of estonia galoter technology[J]. Journal of Northeast Dianli University, 2016, 36(2): 76-80. |
14 | Yefimov V, Alberta T. Process (ATP) selected for retorting Australian oil shale[J]. Oil Shale, 1998, 15(1): 91-92. |
15 | Williams P T, Chishti H M. Two stage pyrolysis of oil shale using a zeolite catalyst [J]. Journal of Analytical and Applied Pyrolysis, 2000, 55 (2): 217-234. |
16 | Lai D, Zhang G, Xu G. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals[J]. Fuel Processing Technology, 2017, 158: 191-198. |
17 | Cavalieri R P, Thomson W J. Effects of oil shale mineral composition on char combustion reactions[J]. Fuel, 1990, 69: 334-339. |
18 | Cavalieri R P, Thomson W J. Effect of mineral species on oil shale char combustion[J]. Geochemistry and Chemistry of Oil Shales, 1983, 230: 543-556. |
19 | Fan C, Yan J W, Huang Y R, et al. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel, 2015, 139: 502-510. |
20 | Yan J, Jiang X, Han X, et al. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317. |
21 | Zeng X, Wang F, Wang Y, et al. Characterization of char gasification in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2014, 28(3): 1838-1845. |
22 | Zhang Y, Zhao M, Linghu R, et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer[J]. Carbon Resources Conversion, 2019, 2(3): 217-224. |
23 | Zeng X, Wang F, Adamu M H, et al. High-temperature drying behavior and kinetics of lignite tested by the micro fluidization analytical method[J]. Fuel, 2019, 253: 180-188. |
24 | Wang F, Zeng X, Shao R, et al. Isothermal gasification of in situ/ex situ coal char with CO2 in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2015, 29(8): 4795-4802. |
25 | Wang F, Zeng X, Wang Y, et al. Non-isothermal coal char gasification with CO2 in a micro fluidized bed reaction analyzer and a thermogravimetric analyzer[J]. Fuel, 2016, 164: 403-409. |
26 | Ballice L, Yüksel M, Saglam M, et al. Application of infrared spectroscopy to the classification of kerogen types and the thermogravimetrically derived pyrolysis kinetics of oil shales[J]. Fuel, 1995, 74(11): 1618-1623. |
27 | Ballice L, Larsen W J. Changes in the cross-link density of Goynuk oil shale (Turkey) on pyrolysis[J]. Fuel, 2003, 82(11): 1305-1310. |
28 | Wang F, Zeng X, Wang Y, et al. Characterization of coal char gasification with steam in a micro-fluidized bed reaction analyzer[J]. Fuel Processing Technology, 2016, 141: 2-8. |
29 | Yu J, Yao C B, Zeng X, et al. Biomass pyrolysis in a micro-fluidized bed reactor: characterization and kinetics[J]. Chemical Engineering Journal, 2011, 168: 839-847. |
30 | Zeng X, Wang F, Wang Y G, et al. Characterization of char gasification in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2014, 28: 1838-1845. |
31 | Lai D G, Chen Z, Lin L, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4): 2219-2226. |
32 | Wang Y L, Zhu S H, Gao M Q, et al. A study of char gasification in H2O and CO2 mixtures: role of inherent minerals in the coal[J]. Fuel Processing Technology, 2016, 141: 9-15. |
33 | Liu H P, Liang W X, Wu M H, et al. Co-combustion of oil shale retorting solid waste with cornstalk particles in a circulating fluidized bed[J]. Energy & Fuels, 2015, 29(10): 6832-6838. |
34 | 卢茂奇. 油页岩半焦流化燃烧反应动力学研究[D].吉林: 东北电力大学, 2018. |
Lu M Q. Study on the kinetics of fluidized combustion reaction of oil shale semicoke[D]. Jilin: Northeast Electric Power University, 2018. | |
35 | Fujimoto F D, Braun R L, Taylor R W, et al. Intrinsic kinetics of oxidation of residual organic carbon in rapidly pyrolyzed oil shale[J]. Energy and Fuel, 1987, 1: 320-323. |
36 | Soni Y, Thomson W J. Oxidation kinetics of oil shale char[J]. Industrial & Engineering Chemistry Process Design and Development, 1979, 18(4): 661-667. |
37 | Han X X, Jiang X M, Cui Z G. Study of the combustion mechanism of oil shale semicoke in a thermogravimetric analyzer[J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(2): 595-600. |
38 | 余剑, 朱剑虹, 岳君容, 等. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60 (10): 2669-2674. |
Yu J, Zhu J H, Yue J R, et al. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. CIESC Journal, 2009, 60(10): 2669-2674. | |
39 | Geng S L, Han Z N, Yue J R, et al. Conditioning micro fluidized bed for maximal approach of gas plug flow [J]. Chemical Engineering Journal, 2018, 351: 110-118. |
40 | 郝丽芳, 李松庚, 崔丽杰, 等.煤催化热解技术研究进展[J].煤炭科学技术, 2012, 40(10): 108-112. |
Hao L F, Li S G, Cui L J, et al. Research progress of coal catalytic pyrolysis technology[J]. Coal Science and Technology, 2012, 40(10): 108-112. | |
41 | Gong X, Guo Z, Wang Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity [J]. Energy Fuels, 2009, 23(9): 4547-4552. |
42 | 公旭中, 郭占成, 王志. Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报, 2009, 60(9): 2321-2326. |
Gong X Z, Guo Z C, Wang Z. Effects of Fe2O3 on pyrolysis reactivity of demineralized higher rank coal and its char structure[J]. CIESC Journal, 2009, 60(9): 2321-2326. | |
43 | McKee D W. Mechanism of the alkali metal catalyzed gasification of carbon [J]. Fuel, 1983, 62(2): 170-175. |
44 | Gong X, Wang G Z. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA)[J]. Energy, 2010, 35: 506-511. |
45 | Han X X, Jiang X M, Cui Z G. Change of pore structure of oil shale particles during combustion(2): Pore structure of oil-shale ash[J]. Energy and Fuels, 2008, 22: 972-975. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 636
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||