化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1731-1741.DOI: 10.11949/0438-1157.20241053
张赵雪1,2(
), 李正宇1,2, 崔文慧1,2, 王倩3, 王志平3, 龚领会1,2(
)
收稿日期:2024-09-23
修回日期:2024-12-30
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
龚领会
作者简介:张赵雪(2000—),女,硕士研究生,zhangzhaoxue22@mails.ucas.ac.cn
基金资助:
Zhaoxue ZHANG1,2(
), Zhengyu LI1,2, Wenhui CUI1,2, Qian WANG3, Zhiping WANG3, Linghui GONG1,2(
)
Received:2024-09-23
Revised:2024-12-30
Online:2025-04-25
Published:2025-05-12
Contact:
Linghui GONG
摘要:
为了解决液氢储能中能量时空错配问题及优先匹配合适应用场景,采用液氖、液氮、二氧化碳等工质联合梯级蓄冷的方法回收冷能,而后预冷旁路氢气再并入液化器补偿冷量以减小耗功。使用Aspen HYSYS软件建立蓄冷、释冷、冷能补偿等流程,并在优先回收低温区冷能的同时,从耦合跨临界CO2燃料电池余热利用循环等方面进行优化。结果表明,无增压蓄冷更有利于直接补偿液化器,氢气出口温度可达到273.7 K,㶲效率为81.65%。增压后蓄冷更侧重于增加输出功,且膨胀产生更多高温区冷能,如在130 K膨胀时氢气出口温度为299 K,能量效率为86.07%,㶲效率为50.86%。对氦布雷顿两级膨胀和氢双压克劳特两种氢液化循环模拟计算均表明,补偿冷量可以有效降低液化耗功且提高㶲效率。
中图分类号:
张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741.
Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen[J]. CIESC Journal, 2025, 76(4): 1731-1741.
| 蓄冷流程 | 蓄冷工质输出流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | |||
|---|---|---|---|---|---|---|
| LNe | HLNe | LN2 | CO2 | |||
| 基本蓄冷流程 | 5.8 | 2.1 | 1 | 222.4 | 79.97 | |
| 增加CO2@2MPa | 5.8 | 2.1 | 1 | 2.9 | 291.1 | 80.16 |
| 增加跨临界CO2余热利用循环的蓄冷流程(增加CO2循环@1 MPa) | 5.8 | 2.1 | 1 | 2.2 | 273.7 | 81.65 |
表1 单位质量流量液氢的蓄冷流程计算结果
Table 1 Calculation results of cold energy storage flow of liquid hydrogen per unit mass flow
| 蓄冷流程 | 蓄冷工质输出流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | |||
|---|---|---|---|---|---|---|
| LNe | HLNe | LN2 | CO2 | |||
| 基本蓄冷流程 | 5.8 | 2.1 | 1 | 222.4 | 79.97 | |
| 增加CO2@2MPa | 5.8 | 2.1 | 1 | 2.9 | 291.1 | 80.16 |
| 增加跨临界CO2余热利用循环的蓄冷流程(增加CO2循环@1 MPa) | 5.8 | 2.1 | 1 | 2.2 | 273.7 | 81.65 |
| 流 程 | 蓄冷工质流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | 能量效率/% | |||
|---|---|---|---|---|---|---|---|
| HLNe | LN2 | CO2 | EG | ||||
| 150 K膨胀 LCO2@2 MPa | 2.9 | 3.2 | 8.6 | 296.5 | 38.18 | 83.34 | |
| 130 K膨胀 LCO2@2 MPa | 2.9 | 4 | 7 | 294.1 | 42.09 | 85.86 | |
| 298 K膨胀 LCO2@2 MPa | 2.9 | 2.6 | 11 | 6 | 292.5 | 36.01 | 68.27 |
| 298 K膨胀CO2循环@1 MPa(440 K高温燃料电池) | 2.9 | 2.6 | 6.4 | 20 | 298.7 | 43.36 | 68.72 |
| 298 K膨胀CO2循环@1 MPa (353 K燃料电池) | 2.9 | 2.6 | 7.8 | 23 | 299.4 | 43.13 | 68.77 |
| 130 K膨胀 CO2循环@1 MPa | 2.9 | 4 | 7 | 5 | 299.0 | 50.86 | 86.07 |
表2 增压后蓄冷的流程计算结果
Table 2 Calculation results of cold energy storage process after pressurization
| 流 程 | 蓄冷工质流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | 能量效率/% | |||
|---|---|---|---|---|---|---|---|
| HLNe | LN2 | CO2 | EG | ||||
| 150 K膨胀 LCO2@2 MPa | 2.9 | 3.2 | 8.6 | 296.5 | 38.18 | 83.34 | |
| 130 K膨胀 LCO2@2 MPa | 2.9 | 4 | 7 | 294.1 | 42.09 | 85.86 | |
| 298 K膨胀 LCO2@2 MPa | 2.9 | 2.6 | 11 | 6 | 292.5 | 36.01 | 68.27 |
| 298 K膨胀CO2循环@1 MPa(440 K高温燃料电池) | 2.9 | 2.6 | 6.4 | 20 | 298.7 | 43.36 | 68.72 |
| 298 K膨胀CO2循环@1 MPa (353 K燃料电池) | 2.9 | 2.6 | 7.8 | 23 | 299.4 | 43.13 | 68.77 |
| 130 K膨胀 CO2循环@1 MPa | 2.9 | 4 | 7 | 5 | 299.0 | 50.86 | 86.07 |
| 释冷流程 | 输入工质流量/(kg/h) | 预冷氢气出口 | 㶲效率/% | 蓄冷释冷总流程 | ||||
|---|---|---|---|---|---|---|---|---|
| LN2 | HLNe | LNe | 温度/K | 流量/(kg/h) | 能量效率/% | 㶲效率/% | ||
| 无增压蓄冷 | 1 | 2.1 | 5.8 | 28.91 | 0.75 | 70.97 | 72.74 | 68.77 |
增压后蓄冷 150 K膨胀 | 3.2 | 2.9 | 51.89 | 0.64 | 63.14 | 52.70 | 37.94 | |
| 298 K膨胀 | 2.6 | 2.9 | 50.04 | 0.58 | 65.98 | 48.16 | 35.01 | |
表3 释冷预冷流程输出冷氢气参数
Table 3 Output parameters of cold hydrogen in the cold energy release and precooling process
| 释冷流程 | 输入工质流量/(kg/h) | 预冷氢气出口 | 㶲效率/% | 蓄冷释冷总流程 | ||||
|---|---|---|---|---|---|---|---|---|
| LN2 | HLNe | LNe | 温度/K | 流量/(kg/h) | 能量效率/% | 㶲效率/% | ||
| 无增压蓄冷 | 1 | 2.1 | 5.8 | 28.91 | 0.75 | 70.97 | 72.74 | 68.77 |
增压后蓄冷 150 K膨胀 | 3.2 | 2.9 | 51.89 | 0.64 | 63.14 | 52.70 | 37.94 | |
| 298 K膨胀 | 2.6 | 2.9 | 50.04 | 0.58 | 65.98 | 48.16 | 35.01 | |
| 液化及补偿流程 | 预冷氢流量/(kg/h) | 液化耗功/(kWh/kg) | 含液氮 液化耗功 | 含液氮 㶲效率/% |
|---|---|---|---|---|
| 1.5 t氦循环 | 15.51 | 18.99 | 21.88 | |
| 无增压蓄冷 | + 65 | 7.87 | 9.69 | 42.87 |
| 增压后蓄冷 | + 28 | 11.03 | 13.60 | 30.55 |
| 5 t氢循环 | 10.42 | 15.61 | 25.76 | |
| 无增压蓄冷 | + 90 | 7.65 | 11.47 | 35.07 |
| 增压后蓄冷 | + 85 | 7.82 | 11.94 | 33.67 |
表4 冷能补偿液化循环的计算结果
Table 4 Calculation results of cold energy compensation to liquefaction cycle
| 液化及补偿流程 | 预冷氢流量/(kg/h) | 液化耗功/(kWh/kg) | 含液氮 液化耗功 | 含液氮 㶲效率/% |
|---|---|---|---|---|
| 1.5 t氦循环 | 15.51 | 18.99 | 21.88 | |
| 无增压蓄冷 | + 65 | 7.87 | 9.69 | 42.87 |
| 增压后蓄冷 | + 28 | 11.03 | 13.60 | 30.55 |
| 5 t氢循环 | 10.42 | 15.61 | 25.76 | |
| 无增压蓄冷 | + 90 | 7.65 | 11.47 | 35.07 |
| 增压后蓄冷 | + 85 | 7.82 | 11.94 | 33.67 |
液化及 补偿流程 | 分流比 | 透平做功/kW | 节流前 换热器 | 末级换热器 | |||
|---|---|---|---|---|---|---|---|
| 一级 | 二级 | 负荷/kW | 㶲效率/% | 负荷/kW | 㶲效率/% | ||
| 1.5 t氦循环 | 0.7 | 11.36 | 14.22 | 42.24 | 83.20 | 3.23 | 83.30 |
| 无增压蓄冷 | 6.57 | 90.20 | |||||
| 增压后蓄冷 | 0.52 | 18.17 | 10.57 | 40.45 | 95.11 | 4.67 | 89.63 |
| 5 t氢循环 | 0.12 | 41.41 | 48.08 | 14.60 | 74.09 | 9.93 | 85.59 |
| 无增压蓄冷 | 4.11 | 93.63 | 20.42 | 83.19 | |||
| 增压后蓄冷 | 0.14 | 35.29 | 40.98 | 9.44 | 90.24 | 20.11 | 85.05 |
表5 冷能补偿液化循环的运行参数对比
Table 5 Comparison of operating parameters of cold energy compensation to liquefaction cycle
液化及 补偿流程 | 分流比 | 透平做功/kW | 节流前 换热器 | 末级换热器 | |||
|---|---|---|---|---|---|---|---|
| 一级 | 二级 | 负荷/kW | 㶲效率/% | 负荷/kW | 㶲效率/% | ||
| 1.5 t氦循环 | 0.7 | 11.36 | 14.22 | 42.24 | 83.20 | 3.23 | 83.30 |
| 无增压蓄冷 | 6.57 | 90.20 | |||||
| 增压后蓄冷 | 0.52 | 18.17 | 10.57 | 40.45 | 95.11 | 4.67 | 89.63 |
| 5 t氢循环 | 0.12 | 41.41 | 48.08 | 14.60 | 74.09 | 9.93 | 85.59 |
| 无增压蓄冷 | 4.11 | 93.63 | 20.42 | 83.19 | |||
| 增压后蓄冷 | 0.14 | 35.29 | 40.98 | 9.44 | 90.24 | 20.11 | 85.05 |
| 1 | Busch T, Groß T, Linßen J, et al. The role of liquid hydrogen in integrated energy systems—a case study for Germany[J]. International Journal of Hydrogen Energy, 2023, 48(99): 39408-39424. |
| 2 | 张震, 解辉, 苏嘉南, 等. “碳中和”背景下的液氢发展之路探讨[J]. 天然气工业, 2022, 42(4): 187-193. |
| Zhang Z, Xie H, Su J N, et al. Development of liquid hydrogen under the background of carbon neutrality[J]. Natural Gas Industry, 2022, 42(4): 187-193. | |
| 3 | Al Ghafri S Z, Munro S, Cardella U, et al. Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities[J]. Energy & Environmental Science, 2022, 15(7): 2690-2731. |
| 4 | Aziz M. Liquid hydrogen: a review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
| 5 | Yilmaz F, Ozturk M, Selbas R. Development and assessment of a newly developed renewable energy-based hybrid system with liquid hydrogen storage for sustainable development[J]. International Journal of Hydrogen Energy, 2024, 56: 406-417. |
| 6 | Incer-Valverde J, Mörsdorf J, Morosuk T, et al. Power-to-liquid hydrogen: exergy-based evaluation of a large-scale system[J]. International Journal of Hydrogen Energy, 2023, 48(31): 11612-11627. |
| 7 | 陈良, 周楷淼, 赖天伟, 等. 液氢为核心的氢燃料供应链[J]. 低温与超导, 2020, 48(11): 1-7. |
| Chen L, Zhou K M, Lai T W, et al. Hydrogen fuel supply chain based on liquid hydrogen[J]. Cryogenics & Superconductivity, 2020, 48(11): 1-7. | |
| 8 | Berstad D, Gardarsdottir S, Roussanaly S, et al. Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111772. |
| 9 | Kim Y, Qi M, Cho J, et al. Process design and analysis for combined hydrogen regasification process and liquid air energy storage[J]. Energy, 2023, 283: 129093. |
| 10 | Huo Y K, Li A R, Wang Q. A novel cascade utilization system of liquid hydrogen cold energy: energy, exergy, and economic analysis[J]. Heat Transfer Engineering, 2024, 45(20/21): 1854-1868. |
| 11 | Li B, Wang S S. Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas[J]. Applied Thermal Engineering, 2022, 214: 118861. |
| 12 | 张涛, 刘嘉楷, 戴天乐, 等. 二氧化碳电热储能与液态储能系统热力性能对比分析[J]. 储能科学与技术, 2024, 13(5): 1554-1563. |
| Zhang T, Liu J K, Dai T L, et al. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide[J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. | |
| 13 | Ahmadi M H, Mohammadi A, Pourfayaz F, et al. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 428-438. |
| 14 | Yang L Z, Villalobos U, Akhmetov B, et al. A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: state of the art and recent developments[J]. Applied Energy, 2021, 288: 116555. |
| 15 | Singla M K, Nijhawan P, Oberoi A S. Hydrogen fuel and fuel cell technology for cleaner future: a review[J]. Environmental Science and Pollution Research, 2021, 28(13): 15607-15626. |
| 16 | Nasser M, Hassan H. Assessment of standalone streetlighting energy storage systems based on hydrogen of hybrid PV/electrolyzer/fuel cell/desalination and PV/batteries[J]. Journal of Energy Storage, 2023, 63: 106985. |
| 17 | He T B, Lv H Y, Shao Z X, et al. Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling[J]. Applied Energy, 2020, 277: 115570. |
| 18 | 卢昕悦, 陈锐莹, 姜夏雪, 等. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| Lu X Y, Chen R Y, Jiang X X, et al. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy[J]. CIESC Journal, 2024, 75(9): 3297-3309. | |
| 19 | Dewevre F, Lacroix C, Loubar K, et al. Carbon dioxide energy storage systems: current researches and perspectives[J]. Renewable Energy, 2024, 224: 120030. |
| 20 | 向腾龙, 王治红, 汪贵, 等. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413. |
| Xiang T L, Wang Z H, Wang G, et al. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413. | |
| 21 | Karayel G K, Javani N, Dincer I. Green hydrogen production potential for Turkey with solar energy[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19354-19364. |
| 22 | Abdollahipour A, Sayyaadi H. Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems[J]. Energy, 2022, 260: 124944. |
| 23 | Zhang T T, Uratani J, Huang Y X, et al. Hydrogen liquefaction and storage: recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204. |
| 24 | 魏瑾. 基于LNG接收站冷能的发电制氢及氢液化耦合工艺研究[D]. 北京: 中国石油大学(北京), 2023. |
| Wei J. Research on coupling process of hydrogen generation and hydrogen liquefaction based on cold energy of LNG receiving terminal[D]. Beijing: China University of Petroleum, 2023. | |
| 25 | 熊联友, 杨坤, 孔巍, 等. 5 t/d氢液化装置的研制[J]. 真空与低温, 2024, 30(4): 349-354. |
| Xiong L Y, Yang K, Kong W, et al. Development of a 5 t/d hydrogen liquefaction unit[J]. Vacuum and Cryogenics, 2024, 30(4): 349-354. | |
| 26 | 秦海玲, 李静, 周刚, 等. 5 t/d氢液化器流程设计及分析[J]. 真空与低温, 2024, 30(4): 355-360. |
| Qin H L, Li J, Zhou G, et al. Process design and analysis of 5 t/d hydrogen liquefier[J]. Vacuum and Cryogenics, 2024, 30(4): 355-360. | |
| 27 | 苏惠坤, 李正宇, 龚领会, 等. 高效双压氦液化循环研究[J]. 华中科技大学学报(自然科学版), 2024, 52(4): 143-148. |
| Su H K, Li Z Y, Gong L H, et al. Research on efficient double-pressure helium liquefaction cycle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4): 143-148. | |
| 28 | Xu Y F, Bi Y J, Ju Y L. The thermodynamic analysis on the catalytical ortho-para hydrogen conversion during the hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2024, 54: 1329-1342. |
| 29 | Yang J, Li Y Z, Li C, et al. Hydrogen pressure-based comparative and applicability analysis of different innovative Claude cycles for large-scale hydrogen liquefaction[J]. Energy, 2024, 305: 132291. |
| 30 | 杨坤, 熊联友, 徐向辉, 等. 1.5 t/d氢液化装置的研制与运行[J]. 真空与低温, 2024, 30(4): 361-367. |
| Yang K, Xiong L Y, Xu X H, et al. Development and operation of a 1.5 t/d hydrogen liquefaction plant[J]. Vacuum and Cryogenics, 2024, 30(4): 361-367. |
| [1] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [2] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [3] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [4] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [5] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [6] | 陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721. |
| [7] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [8] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [9] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [10] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [11] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [12] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [13] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [14] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [15] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号