化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2042-2054.DOI: 10.11949/0438-1157.20241230
赵浩帆1(
), 任豪杰1, 刘宗凯1, 董冠英1,2(
), 张亚涛1,2(
)
收稿日期:2024-11-01
修回日期:2025-01-07
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
董冠英,张亚涛
作者简介:赵浩帆(2000—),男,硕士研究生,hhzh202406@163.com
基金资助:
Haofan ZHAO1(
), Haojie REN1, Zongkai LIU1, Guanying DONG1,2(
), Yatao ZHANG1,2(
)
Received:2024-11-01
Revised:2025-01-07
Online:2025-05-25
Published:2025-06-13
Contact:
Guanying DONG, Yatao ZHANG
摘要:
金属有机框架(metal organic frameworks,MOFs)玻璃材料的出现与传统的MOFs材料形成了良好互补,凭借其独特的熔融特性及短程有序、长程无序的超微孔结构,有效避免了多晶MOFs膜存在的晶间缺陷以及MOFs基杂化膜中相界面不兼容问题,为气体分离膜领域带来了新的技术选择。首先回顾了MOFs玻璃材料的研究历程,系统总结了MOFs玻璃的制备方法,介绍了MOFs玻璃膜在气体分离领域的最新研究进展,最后针对MOFs玻璃膜气体分离发展面临的问题进行了分析,并提出了潜在的研究方向和解决方案。
中图分类号:
赵浩帆, 任豪杰, 刘宗凯, 董冠英, 张亚涛. MOFs玻璃膜在气体分离领域的研究进展[J]. 化工学报, 2025, 76(5): 2042-2054.
Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications[J]. CIESC Journal, 2025, 76(5): 2042-2054.
图1 (a)MOFs玻璃熔融-淬火过程[13];(b)典型的ZIFs玻璃前体的晶体结构及对应熔化温度Tm和分解温度Td
Fig.1 (a) Melting-quenching process of MOFs glass[13]; (b) Crystal structures of typical ZIFs glass precursors and corresponding melting temperature Tm and decomposition temperature Td
图2 溶剂热、超声、机械球磨、电化学辅助合成方法示意图
Fig.2 Schematic representation of solvothermal, ultrasonic, mechanical ball milling and electrochemical assisted synthesis methods
图4 (a)ZIF-8配体交换过程示意图[52];(b)UiO-67配体结构改造示意图[53]
Fig. 4 (a) Schematic diagram of the ligand exchange process of ZIF-8[52]; (b) Schematic diagram of the ligand structure modification of UiO-67[53]
图5 (a)ZIF-62玻璃膜的EDXS谱图[63];(b)单气体渗透通量与气体分子动力学直径的函数关系[63];(c)原子层沉积法制备的agZIF-62玻璃薄膜断面SEM图像[65];(d)电化学辅助法制备的相应ZIF-62玻璃薄膜的断面SEM图像[51];电化学辅助法制备玻璃膜的CO2/N2(e)和CO2/CH4(f)分离性能[51]
Fig.5 (a) EDXS patterns of ZIF-62 glass films[63]; (b) Single gas permeance as a function of gas kinetic diameter[63]; (c) SEM image of the cross-section of agZIF-62 glass films prepared by atomic layer deposition[65]; (d) SEM image of the cross-section of the corresponding ZIF-62 glass films prepared by electrochemical assisted method[51]; (e) CO2/N2 and (f) CO2/CH4 separation performance of electrochemically assisted method of preparation of glass films [51]
图6 (a)PEI分解过程对agfZIF-62形成的影响[69];(b)agfZIF-62的高分辨率TEM图像[69];(c)agfZIF-62膜的气体分离性能对比[69]
Fig.6 (a) Effect of PEI decomposition process on the formation of agfZIF-62[69]; (b) High-resolution TEM image of agfZIF-62[69]; (c) Comparison of gas separation performance of agfZIF-62 membrane[69]
图7 (a)CGC膜的制备工艺[75];(b)C2H6分子跨膜运输模型[75];(c)ag[(ZIF-62)1-X (ZIF-8) X ]膜气体分离性能[75]
Fig. 7 (a) Preparation process of CGC membranes[75]; (b) Modelling of transmembrane transport of C2H6 molecules[75]; (c) Gas separation properties of ag[(ZIF-62)1-X (ZIF-8) X ] membranes[75]
图8 (a)ZIF-62/PIM-1[(1)、(3)]与agZIF-62/PIM-1[(2)、(4)]断面SEM图[44];(b)agZIF-62/PIM-1性能对比[44];(c)ZIF-62/PBI[(1)、(3)]与agZIF-62/PBI[(2)、(4)]断面SEM图[80];(d)agZIF-62/PBI性能对比[80]
Fig. 8 (a) Cross-sectional SEM images of ZIF-62/PIM-1 [(1), (3)] and agZIF-62/PIM-1 [(2), (4)][44]; (b) Comparison of agZIF-62/PIM-1 performance[44]; (c) Cross-sectional SEM images of ZIF-62/PBI [(1), (3)] and agZIF-62/PBI [(2), (4)][80]; (d) Comparison of agZIF-62/PBI performance[80]
| 1 | Han B H. Porous organic polymers[J]. Journal of Polymer Science, 2024, 62(8): 1491-1492. |
| 2 | Bumstead A M, Castillo-Blas C, Pakamorė I, et al. Formation of a meltable purinate metal-organic framework and its glass analogue[J]. Chemical Communications, 2023, 59(6): 732-735. |
| 3 | Liu X M, Tang B, Long J L, et al. The development of MOFs-based nanomaterials in heterogeneous organocatalysis[J]. Science Bulletin, 2018, 63(8): 502-524. |
| 4 | Zhao X D, Zheng M Q, Gao X L, et al. The application of MOFs-based materials for antibacterials adsorption[J]. Coordination Chemistry Reviews, 2021, 440: 213970. |
| 5 | 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
| Li M Z, Jia G W, Zhao Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379. | |
| 6 | Xie X J, Zeng H, Lu W G, et al. Metal-organic frameworks for hydrocarbon separation: design, progress, and challenges[J]. Journal of Materials Chemistry A, 2023, 11(38): 20459-20469. |
| 7 | Tan H, Zhao X, Du L T, et al. One-pot synthesis of MOF@MOF: structural incompatibility leads to core-shell structure and adaptability control makes the sequence[J]. Small, 2024, 20(3): 2305881. |
| 8 | Bi W D, Han L X, Liu Y T, et al. The key to MOF membrane fabrication and application: the trade-off between crystallization and film formation[J]. Chemistry, 2024, 30(64): e202401868. |
| 9 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| 10 | Horike S, Shimomura S, Kitagawa S. Soft porous crystals[J]. Nature Chemistry, 2009, 1(9): 695-704. |
| 11 | Yao M S, Otake K I, Xue Z Q, et al. Concluding remarks: current and next generation MOFs[J]. Faraday Discussions, 2021, 231(0): 397-417. |
| 12 | Bennett T D, Tan J C, Yue Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nature Communications, 2015, 6(1): 8079. |
| 13 | Wang M Y, Zhao H Y, Du B W, et al. Functions and applications of emerging metal-organic-framework liquids and glasses[J]. Chemical Communications, 2023, 59(47): 7126-7140. |
| 14 | 刘鑫宇, 郭超慧, 陶海征, 等. Fe-金属有机框架玻璃的形成过程与机理[J]. 硅酸盐学报, 2024, 52(8): 2553-2558. |
| Liu X Y, Guo C H, Tao H Z, et al. Formation mechanism of a Fe-based metal-organic frameworks glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2553-2558. | |
| 15 | Qiao A, Bennett T D, Tao H Z, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4(3): eaao6827. |
| 16 | Kouser S, Hezam A, Nagesh Khadri M J, et al. A review on zeolite imidazole frameworks: synthesis, properties, and applications[J]. Journal of Porous Materials, 2022, 29(3): 663-681. |
| 17 | Ma N, Kosasang S, Berdichevsky E K, et al. Functional metal-organic liquids[J]. Chemical Science, 2024, 15(20): 7474-7501. |
| 18 | Peng S X, Zhu Y Y, Li G, et al. Experimental evidence of β-relaxation and its structural origin in ZIF-62 glass[J]. Soft Matter, 2023, 19(29): 5575-5582. |
| 19 | Yan S H, Bennett T D, Feng W P, et al. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass[J]. Nanoscale, 2023, 15(18): 8235-8244. |
| 20 | Laulainen J E M, Johnstone D N, Bogachev I, et al. Mapping short-range order at the nanoscale in metal-organic framework and inorganic glass composites[J]. Nanoscale, 2022, 14(44): 16524-16535. |
| 21 | Widmer R N, Lampronti G I, Anzellini S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nature Materials, 2019, 18(4): 370-376. |
| 22 | Sørensen S S, Østergaard M B, Stepniewska M, et al. Metal-organic framework glasses possess higher thermal conductivity than their crystalline counterparts[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18893-18903. |
| 23 | 叶茂, 奥德, 孙玉绣, 等. 新型自支撑ZIF玻璃膜的制备及气体分离性能[J]. 硅酸盐学报, 2024, 52(8): 2545-2552. |
| Ye M, Ao D, Sun Y X, et al. Preparation and performance of a novel self-supported ZIF glass membrane for gas separation[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2545-2552. | |
| 24 | Zhao Y F, Zeng H, Zhu X W, et al. Metal-organic frameworks as photoluminescent biosensing platforms: mechanisms and applications[J]. Chemical Society Reviews, 2021, 50(7): 4484-4513. |
| 25 | Zheng Y Q, Wang J H, Huang H K, et al. Research and application of MOFs-derived porous carbon materials in food safety detection: a review[J]. Trends in Food Science & Technology, 2024, 147: 104449. |
| 26 | Maliha Z, Rani M, Neffati R, et al. Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors[J]. International Journal of Energy Research, 2022, 46(12): 17404-17415. |
| 27 | Orton G R F, Champness N R. Through the MOF looking glass[J]. Nature Materials, 2024, 23(2): 172-173. |
| 28 | Qiao A, Sørensen S S, Stepniewska M, et al. Hypersensitivity of the glass transition to pressure history in a metal-organic framework glass[J]. Chemistry of Materials, 2022, 34(11): 5030-5038. |
| 29 | Yin Z, Zhao Y B, Wan S, et al. Synergistic stimulation of metal-organic frameworks for stable super-cooled liquid and quenched glass[J]. Journal of the American Chemical Society, 2022, 144(29): 13021-13025. |
| 30 | Fonseca J, Gong T H, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses[J]. Journal of Materials Chemistry A, 2021, 9(17): 10562-10611. |
| 31 | Yin Z, Zhang Y B, Yu H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Science Bulletin, 2020, 65(17): 1432-1435. |
| 32 | Xue W L, Das D C, Weiß J B, et al. Insights into the mechanochemical glass formation of zeolitic imidazolate frameworks[J]. Angewandte Chemie International Edition, 2024, 63(38): e202405307. |
| 33 | Umeyama D, Horike S, Inukai M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals[J]. Journal of the American Chemical Society, 2015, 137(2): 864-870. |
| 34 | Aghajani Hashjin M, Zarshad S, Motejadded Emrooz H B, et al. Enhanced atmospheric water harvesting efficiency through green-synthesized MOF-801: a comparative study with solvothermal synthesis[J]. Scientific Reports, 2023, 13(1): 16983. |
| 35 | Tan B Q, Luo Y S, Liang X H, et al. Mixed-solvothermal synthesis of MIL-101(Cr) and its water adsorption/desorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2983-2990. |
| 36 | Zhang Y T, Wang Y C, Xia H N, et al. A hybrid ZIF-8/ZIF-62 glass membrane for gas separation[J]. Chemical Communications, 2022, 58(68): 9548-9551. |
| 37 | Bumstead A M, Ríos Gómez M L, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627-3637. |
| 38 | Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nature Communications, 2018, 9(1): 5042. |
| 39 | Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. Journal of the American Chemical Society, 2019, 141(2): 1027-1034. |
| 40 | Thorne M F, Gómez M L R, Bumstead A M, et al. Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal-organic frameworks[J]. Green Chemistry, 2020, 22(8): 2505-2512. |
| 41 | Mancia L, Yang J, Spratt J S, et al. Acoustic cavitation rheometry[J]. Soft Matter, 2021, 17(10): 2931-2941. |
| 42 | Shi Z X, Zhou H, Li F, et al. Ultrasound-assisted synthesis of NaZn2(OH)(MoO4)2·H2O for effective sonocatalytic performance[J]. Materials Science in Semiconductor Processing, 2022, 144: 106562. |
| 43 | Yi J, Lee G, Park S S. Solvent-induced structural rearrangement in ultrasound-assisted synthesis of metal-organic frameworks[J]. Small Methods, 2024, 8(12): 2400363. |
| 44 | Feng Y, Yan W, Kang Z X, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chemical Engineering Journal, 2023, 465: 142873. |
| 45 | Kubota K, Pang Y D, Miura A, et al. Redox reactions of small organic molecules using ball milling and piezoelectric materials[J]. Science, 2019, 366(6472): 1500-1504. |
| 46 | Afshariazar F, Morsali A. The unique opportunities of mechanosynthesis in green and scalable fabrication of metal-organic frameworks[J]. Journal of Materials Chemistry A, 2022, 10(29): 15332-15369. |
| 47 | Bennett T D, Cao S, Tan J C, et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2011, 133(37): 14546-14549. |
| 48 | Švegovec M, Škrjanc A, Krajnc A, et al. Green synthesis approaches toward preparation of ZIF-76 and its thermal behavior[J]. Crystal Growth & Design, 2023, 23(5): 3754-3760. |
| 49 | Ren H, Wei T X. Electrochemical synthesis methods of metal-organic frameworks and their environmental analysis applications: a review[J]. ChemElectroChem, 2022, 9(13): e202200196. |
| 50 | Li W J, Tu M, Cao R, et al. Metal-organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives[J]. Journal of Materials Chemistry A, 2016, 4(32): 12356-12369. |
| 51 | Xie D S, Tan D X, Xue Z H, et al. Cathodic deposition-assisted synthesis of thin glass MOF films for high-performance gas separations[J]. Angewandte Chemie International Edition, 2024, 136(27): e202401817. |
| 52 | Xue W L, Kolodzeiski P, Aucharova H, et al. Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8[J]. Nature Communications, 2024, 15(1): 4420. |
| 53 | Xue W L, Li G Q, Chen H, et al. Melt-quenched glass formation of a family of metal-carboxylate frameworks[J]. Nature Communications, 2024, 15(1): 2040. |
| 54 | Kim M, Lee H S, Seo D H, et al. Melt-quenched carboxylate metal-organic framework glasses[J]. Nature Communications, 2024, 15(1): 1174. |
| 55 | Luo W J, Li F, Liu J, et al. Advanced HOFs-based membranes for gas separation: opportunities and challenges[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113987. |
| 56 | Arshad N, Batool S R, Razzaq S, et al. Recent advancements in polyurethane-based membranes for gas separation[J]. Environmental Research, 2024, 252: 118953. |
| 57 | Li Z C, Wang Y M, Zhang J X, et al. A short review of advances in MOF glass membranes for gas adsorption and separation[J]. Membranes, 2024, 14(5): 99. |
| 58 | Su W J, Xiang Y Y, Dai Y Y, et al. Challenges and recent advances in MOF-based gas separation membranes[J]. Chemical Communications, 2024, 60(56): 7124-7135. |
| 59 | Hsu C H, Lin C Y, Wang H Y, et al. Single-file diffusion and its influence on membrane gas separation: a case study on UTSA-280[J]. Journal of Membrane Science, 2024, 706: 122920. |
| 60 | Hu X, Li Z Y, Li J B, et al. Honeycomb ZIF-67 membrane with hierarchical channels for high-permeance gas separation[J]. Small, 2025, 21(7): 2406693. |
| 61 | Lin R J, Chai M, Zhou Y H, et al. Metal-organic framework glass composites[J]. Chemical Society Reviews, 2023, 52(13): 4149-4172. |
| 62 | 莫滨宇, 张雅馨, 刘国振, 等. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197. |
| Mo B Y, Zhang Y X, Liu G Z, et al. Recent progress of metal-organic framework membranes for mono/divalent ions separation[J]. CIESC Journal, 2024, 75(4): 1183-1197. | |
| 63 | Wang Y H, Jin D H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
| 64 | Xia H N, Jin H, Zhang Y T, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. Journal of Membrane Science, 2022, 655: 120611. |
| 65 | Stone D M, Morgan S E, Abdelmigeed M O, et al. Control of ZIF-62 and agZIF-62 film thickness within asymmetric tubular supports through pressure and dose time variation of atomic layer deposition[J]. Small, 2024, 20(27): 2307202. |
| 66 | Zhao Z J, Ding L, Mundstock A, et al. Preparation of ZIF-62 polycrystalline and glass membranes for helium separation[J]. Journal of Membrane Science, 2024, 700: 122677. |
| 67 | Tuffnell J M, Ashling C W, Hou J W, et al. Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites[J]. Chemical Communications, 2019, 55(60): 8705-8715. |
| 68 | Bin Zulkifli M Y, Su K, Chen R Q, et al. Future perspective on MOF glass composite thin films as selective and functional membranes for molecular separation[J]. Advanced Membranes, 2022, 2: 100036. |
| 69 | Yang Z B, Belmabkhout Y, McHugh L N, et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations[J]. Nature Materials, 2023, 22: 888-894. |
| 70 | Longley L, Collins S M, Zhou C, et al. Liquid phase blending of metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 2135. |
| 71 | 耿秀梅, 张逢, 张翔, 等. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
| Geng X M, Zhang F, Zhang X, et al. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. | |
| 72 | 高逸飞, 易群, 齐凯, 等. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
| Gao Y F, Yi Q, Qi K, et al. Research status and application in H2/CH4 separation of MOFs-based membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. | |
| 73 | Liu Y T, Wu H, Li R L, et al. MOF-COF “alloy” membranes for efficient propylene/propane separation[J]. Advanced Materials, 2022, 34(24): 2201423. |
| 74 | Chen J J, Wu X L, Chen C C, et al. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation[J]. Journal of Membrane Science, 2022, 648: 120382. |
| 75 | Ao D, Yang Z B, Qiao Z H, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angewandte Chemie International Edition, 2023, 62(28): e202304535. |
| 76 | Li D D, Yang Z B, Yang L X, et al. Self-supported flux melted glass membranes fabricated by melt quenching for gas separation[J]. Journal of Membrane Science, 2024, 695: 122492. |
| 77 | Ao D, Yang Z B, Chen A B, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401118. |
| 78 | Lin R J, Hou J W, Li M R, et al. Interfacial engineering of a polymer-MOF composite by in situ vitrification[J]. Chemical Communications, 2020, 56(25): 3609-3612. |
| 79 | Mubashir M, Dumée L F, Fong Y Y, et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation[J]. Journal of Hazardous Materials, 2021, 415: 125639. |
| 80 | Li N, Ma C, Li D D, et al. In-situ glass transition of ZIF-62 based mixed matrix membranes for enhancing H2 fast separation[J]. Separation and Purification Technology, 2025, 353: 128500. |
| [1] | 张冰, 李建惠, 马欣蓉, 陈杨, 李晋平, 李立博. 蒸气相辅助法制备MOF基材料的研究进展[J]. 化工学报, 2025, 76(5): 2026-2041. |
| [2] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [3] | 顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418. |
| [4] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [5] | 赵海钎, 陈方, 陈涛, 郭建维, 林文静, 杨楚芬. 叶酸修饰的pH响应共聚物混合胶束用于抗癌药物递送[J]. 化工学报, 2025, 76(4): 1702-1710. |
| [6] | 王晓琨, 廖泽林, 武俊良, 陈星宇, 于奕菲, 贺高红, 张秀娟. 提升血液相容性及促进CO2传递的LDH-PTFPMS/PEI复合膜制备及性能评价[J]. 化工学报, 2025, 76(4): 1800-1808. |
| [7] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应与传递过程强化方法研究进展[J]. 化工学报, 2025, 76(4): 1391-1403. |
| [8] | 张静, 元跃, 刘艳梅, 王智文, 陈涛. 生物法制备衣康酸研究进展[J]. 化工学报, 2025, 76(3): 909-921. |
| [9] | 徐艳焦, 楼琳瑾, 樊茁钦, 张浩淼, 王靖岱, 阳永荣. 甲基铝氧烷的改性技术研究进展[J]. 化工学报, 2025, 76(2): 454-465. |
| [10] | 应昕, 杜淼, 潘鹏举, 单国荣. 高折射率聚硫氨酯的合成、结构与性能[J]. 化工学报, 2025, 76(2): 858-867. |
| [11] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [12] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [13] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [14] | 纪之骄, 张晓方, 甘汶, 薛云鹏. 载体对单原子电催化剂合成氨性能的影响与调控策略[J]. 化工学报, 2025, 76(1): 18-39. |
| [15] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号