化工学报 ›› 2025, Vol. 76 ›› Issue (2): 825-834.DOI: 10.11949/0438-1157.20240962
• 能源和环境工程 • 上一篇
殷梦凡1(), 王倩1, 郑涛1, 姬奎1,2, 王绍贵2, 郭辉2, 林志强2, 张睿1, 孙晖1, 刘海燕1, 刘植昌1, 徐春明1, 孟祥海1(
), 王月平2(
)
收稿日期:
2024-08-27
修回日期:
2024-12-06
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
孟祥海,王月平
作者简介:
殷梦凡(1997—),女,博士研究生,920045433@qq.com
基金资助:
Mengfan YIN1(), Qian WANG1, Tao ZHENG1, Kui JI1,2, Shaogui WANG2, Hui GUO2, Zhiqiang LIN2, Rui ZHANG1, Hui SUN1, Haiyan LIU1, Zhichang LIU1, Chunming XU1, Xianghai MENG1(
), Yueping WANG2(
)
Received:
2024-08-27
Revised:
2024-12-06
Online:
2025-03-25
Published:
2025-03-10
Contact:
Xianghai MENG, Yueping WANG
摘要:
氢能是目前最具前景的清洁能源之一,通过可再生能源电解水制氢可以实现绿氢生产,但氢气的高效储存和运输难度较大。氨是高效的储氢材料,但合成氨所需高温高压的反应条件致使过程能耗较高,因此发展可再生能源电解水制氢-低温低压合成氨工艺对于能源绿色转型和企业低碳发展具有重要意义。基于Aspen Plus流程模拟软件,设计开发了可再生能源电解水制氢-低温低压合成氨工艺流程,并结合合成氨工业示范企业的生产条件,合理设计万吨级合成氨示范生产工艺。采用光伏发电联合电网为碱性电解水制氢装置供电,在85℃、1.6 MPa下生产1000 m3/h(标准工况)纯度为99.999%的氢气。为了满足万吨级合成氨需求,进一步结合示范企业现有氮气和氢氮混合气共同进料,在400℃、7 MPa下反应生成氨,经氨冷分离得到纯度为99.9%的液氨产品。此外,对耗能较高的合成氨工艺进行四次换热设计,节省能耗。本研究为可再生能源电解水制氢-低温低压合成氨的工业示范提供参考。
中图分类号:
殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834.
Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis[J]. CIESC Journal, 2025, 76(2): 825-834.
图1 光伏发电-电解水制氢-低温低压合成氨工艺设计
Fig.1 Process design of photovoltaic power generation - hydrogen production from electrolytic water-low temperature and low pressure ammonia synthesis
气体 | 进料产品气/(kmol/h) | 流股2组分流率/(kmol/h) | |||||
---|---|---|---|---|---|---|---|
企业实际 | NRTL | UNIFAC | RKS-BM | PR | PR-BM | ||
氮气 | 103.03 | 0.06 | 1.96 | 4.52 | 0.05 | 0.06 | 0.05 |
氢气 | 309.17 | 0.15 | 0.29 | 0.00 | 0.14 | 0.15 | 0.24 |
氨 | 95.05 | 73.37 | 79.00 | 74.36 | 73.36 | 73.37 | 71.29 |
表1 氨的冷凝分离工段企业与计算结果
Table 1 Ammonia condensation separation section enterprise and calculation results
气体 | 进料产品气/(kmol/h) | 流股2组分流率/(kmol/h) | |||||
---|---|---|---|---|---|---|---|
企业实际 | NRTL | UNIFAC | RKS-BM | PR | PR-BM | ||
氮气 | 103.03 | 0.06 | 1.96 | 4.52 | 0.05 | 0.06 | 0.05 |
氢气 | 309.17 | 0.15 | 0.29 | 0.00 | 0.14 | 0.15 | 0.24 |
氨 | 95.05 | 73.37 | 79.00 | 74.36 | 73.36 | 73.37 | 71.29 |
温度/℃ | 压力/MPa | 电流密度/(A/m2) | 小室电压/V | 小室数量 | 有效活性直径/m | 有效电极面积/m2 | 电解槽功率/MW | 产氢量/(m3/h,标准工况) |
---|---|---|---|---|---|---|---|---|
85 | 1.6 | 4000 | 1.99 | 200 | 2 | 3.14 | 5 | 1000 |
表2 碱性电解水电解槽参数
Table 2 Parameters of alkaline water electrolytic cell
温度/℃ | 压力/MPa | 电流密度/(A/m2) | 小室电压/V | 小室数量 | 有效活性直径/m | 有效电极面积/m2 | 电解槽功率/MW | 产氢量/(m3/h,标准工况) |
---|---|---|---|---|---|---|---|---|
85 | 1.6 | 4000 | 1.99 | 200 | 2 | 3.14 | 5 | 1000 |
项目 | 组分流率/(kmol/h) | ||||
---|---|---|---|---|---|
水 | 氢气 | 氧气 | K+ | OH⁻ | |
新鲜水进料 | 44.69 | 0.00 | 0.00 | 0.00 | 0.00 |
电解槽进料 | 55.81 | 0.00 | 0.01 | 7.70 | 7.70 |
电解槽氢气侧出料 | 5.58 | 44.65 | 0.00 | 3.85 | 3.85 |
电解槽氧气侧出料 | 5.58 | 0.00 | 22.33 | 3.85 | 3.85 |
氢气产品 | 0.00 | 44.65 | 0.00 | 0.00 | 0.00 |
氧气产品 | 0.00 | 0.00 | 22.32 | 0.00 | 0.00 |
表3 碱性电解水制氢工艺主要流股组分流率
Table 3 Main flow rate of hydrogen production from alkaline electrolytic water
项目 | 组分流率/(kmol/h) | ||||
---|---|---|---|---|---|
水 | 氢气 | 氧气 | K+ | OH⁻ | |
新鲜水进料 | 44.69 | 0.00 | 0.00 | 0.00 | 0.00 |
电解槽进料 | 55.81 | 0.00 | 0.01 | 7.70 | 7.70 |
电解槽氢气侧出料 | 5.58 | 44.65 | 0.00 | 3.85 | 3.85 |
电解槽氧气侧出料 | 5.58 | 0.00 | 22.33 | 3.85 | 3.85 |
氢气产品 | 0.00 | 44.65 | 0.00 | 0.00 | 0.00 |
氧气产品 | 0.00 | 0.00 | 22.32 | 0.00 | 0.00 |
项目 | 换热器E202 | 换热器E203 | 换热器E204 | 换热器E205 |
---|---|---|---|---|
热负荷/kW | 891 | 519 | 239 | 82 |
总负荷/kW | 1731 |
表4 四次换热设备热负荷
Table 4 Heat load of four heat exchange equipment
项目 | 换热器E202 | 换热器E203 | 换热器E204 | 换热器E205 |
---|---|---|---|---|
热负荷/kW | 891 | 519 | 239 | 82 |
总负荷/kW | 1731 |
项目 | 组分流率/(kmol/h) | ||
---|---|---|---|
氮气 | 氢气 | 氨 | |
新鲜氮气进料 | 14.88 | 0.00 | 0.00 |
新鲜氢气进料 | 0.00 | 44.65 | 0.00 |
新鲜氢氮混合气进料 | 21.88 | 65.65 | 0.00 |
循环气 | 102.79 | 309.63 | 6.36 |
氨合成塔出口气 | 102.80 | 309.65 | 79.87 |
氨分离罐S201气相出料 | 102.78 | 309.62 | 70.47 |
氨分离罐S201液相出料 | 0.01 | 0.03 | 9.41 |
氨冷凝分离器S202气相出料 | 102.75 | 309.54 | 6.35 |
氨冷凝分离器S202液相出料 | 0.03 | 0.08 | 64.12 |
减压缓冲罐S203气相出料 | 0.03 | 0.09 | 0.01 |
减压缓冲罐S203液相出料 | 0.01 | 0.02 | 73.51 |
液氨产品 | 0.01 | 0.02 | 73.51 |
表5 低温低压合成氨工艺主要流股组分流率
Table 5 Main flow rate of low temperature and low pressure ammonia synthesis process
项目 | 组分流率/(kmol/h) | ||
---|---|---|---|
氮气 | 氢气 | 氨 | |
新鲜氮气进料 | 14.88 | 0.00 | 0.00 |
新鲜氢气进料 | 0.00 | 44.65 | 0.00 |
新鲜氢氮混合气进料 | 21.88 | 65.65 | 0.00 |
循环气 | 102.79 | 309.63 | 6.36 |
氨合成塔出口气 | 102.80 | 309.65 | 79.87 |
氨分离罐S201气相出料 | 102.78 | 309.62 | 70.47 |
氨分离罐S201液相出料 | 0.01 | 0.03 | 9.41 |
氨冷凝分离器S202气相出料 | 102.75 | 309.54 | 6.35 |
氨冷凝分离器S202液相出料 | 0.03 | 0.08 | 64.12 |
减压缓冲罐S203气相出料 | 0.03 | 0.09 | 0.01 |
减压缓冲罐S203液相出料 | 0.01 | 0.02 | 73.51 |
液氨产品 | 0.01 | 0.02 | 73.51 |
名称 | 年消耗量/产量 | 单价 | 金额/(104 CNY) | |
---|---|---|---|---|
原料 | 水(脱盐水) | 6440 t/a | 2.5 CNY/t | 1.61 |
氮气 | 2666854 m3/a(标准工况) | 0.57 CNY/m3(标准工况) | 152.01 | |
氢氮混合气 | 15685376 m3/a(标准工况) | 0.74 CNY/m3(标准工况) | 1160.72 | |
锅炉水 | 10400 t/a | 2.5 CNY/t | 2.60 | |
原料总计 | 1316.94 | |||
产品 | 氧气 | 5715 t/a | 0.04×104 CNY/t | 228.60 |
饱和蒸汽 | 10400 t/a | 0.02×104 CNY/t | 208.00 | |
液氨 | 10019 t/a | 0.30×104 CNY/t | 3005.70 | |
产品总计 | 3442.30 | |||
产品经济潜力 | 2125.36 |
表6 产品经济潜力
Table 6 Product economic potential
名称 | 年消耗量/产量 | 单价 | 金额/(104 CNY) | |
---|---|---|---|---|
原料 | 水(脱盐水) | 6440 t/a | 2.5 CNY/t | 1.61 |
氮气 | 2666854 m3/a(标准工况) | 0.57 CNY/m3(标准工况) | 152.01 | |
氢氮混合气 | 15685376 m3/a(标准工况) | 0.74 CNY/m3(标准工况) | 1160.72 | |
锅炉水 | 10400 t/a | 2.5 CNY/t | 2.60 | |
原料总计 | 1316.94 | |||
产品 | 氧气 | 5715 t/a | 0.04×104 CNY/t | 228.60 |
饱和蒸汽 | 10400 t/a | 0.02×104 CNY/t | 208.00 | |
液氨 | 10019 t/a | 0.30×104 CNY/t | 3005.70 | |
产品总计 | 3442.30 | |||
产品经济潜力 | 2125.36 |
1 | Phan T S, Pham Minh D, Espitalier F, et al. Hydrogen production from biogas: process optimization using ASPEN Plus® [J]. International Journal of Hydrogen Energy, 2022, 47(100): 42027-42039. |
2 | Yan X, Wang K, Xiao F X. Electron tunneling fosters solar-to-hydrogen energy conversion[J]. Inorganic Chemistry, 2023, 62(42): 17454-17463. |
3 | Qu L, Gou Q Z, Deng J B, et al. A perspective of bioinspired interfaces applied in renewable energy storage and conversion devices[J]. Langmuir, 2024, 40(13): 6601-6611. |
4 | Nguyen N N. Prospect and challenges of hydrate-based hydrogen storage in the low-carbon future[J]. Energy & Fuels, 2023, 37(14): 9771-9789. |
5 | 廖龙飞, 李明雨, 尹永利, 等. 碱性水电解制氢催化剂研究进展[J]. 工业催化, 2023, 31(2): 7-17. |
Liao L F, Li M Y, Yin Y L, et al. Research progress on catalysts of alkaline water electrolysis for hydrogen production[J]. Industrial Catalysis, 2023, 31(2): 7-17. | |
6 | Nikolic V M, Tasic G S, Maksic A D, et al. Raising efficiency of hydrogen generation from alkaline water electrolysis— energy saving[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12369-12373. |
7 | Peng L Q, Guo Y, Liu S W, et al. Subsidizing grid-based electrolytic hydrogen will increase greenhouse gas emissions in coal dominated power systems[J]. Environmental Science & Technology, 2024, 58(12): 5187-5195. |
8 | 曾悦, 王月, 张学瑞, 等. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
Zeng Y, Wang Y, Zhang X R, et al. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. | |
9 | 刘洪茹, 林文胜. 基于液氢和氨的氢运输链能效和碳排放分析[J]. 化工进展, 2023, 42(3): 1291-1298. |
Liu H R, Lin W S. Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1291-1298. | |
10 | Zhu X B, Liu J, Hu X L, et al. Plasma-catalytic synthesis of ammonia over Ru-based catalysts: insights into the support effect[J]. Journal of the Energy Institute, 2022, 102: 240-246. |
11 | Ma S C, Yu L Z, Jiang H X, et al. Coal-fired power plants using ammonia for flexibility enhancement under carbon control strategies: status, development, and perspectives[J]. Energy & Fuels, 2024, 38(6): 4946-4965. |
12 | Wang Y Y, Wang Q Y, Sun S H, et al. Highly efficient ammonia synthesis by gas-liquid interface pulsed discharge plasma: a synthesis method without hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(35): 13070-13080. |
13 | 李卫东, 李逸龙, 滕霖, 等. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238. |
Li W D, Li Y L, Teng L, et al. Research progress on ammonia energy technology and economy under “carbon emission peak” and “carbon neutrality” targets[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. | |
14 | 孙晖, 孟祥海, 魏景海, 等. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
Sun H, Meng X H, Wei J H, et al. New scene for ammonia synthesis by green hydrogen[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. | |
15 | Cheng G S, Yang Y H, Xiu T C, et al. Analysis of hydrogen production potential from water electrolysis in China[J]. Energy & Fuels, 2023, 37(13): 9220-9232. |
16 | Sánchez M, Amores E, Abad D, et al. Aspen Plus model of an alkaline electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3916-3929. |
17 | Bystron T, Vesely M, Paidar M, et al. Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation[J]. Journal of Applied Electrochemistry, 2018, 48(6): 713-723. |
18 | Noor Azam A M I, Ragunathan T, Zulkefli N N, et al. Investigation of performance of anion exchange membrane (AEM) electrolysis with different operating conditions[J]. Polymers, 2023, 15(5): 1301. |
19 | Mastropasqua L, Pecenati I, Giostri A, et al. Solar hydrogen production: techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system[J]. Applied Energy, 2020, 261: 114392. |
20 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
21 | 林承顺. 合成氨工艺技术现状及发展趋势[J]. 能源化工, 2024, 45(1): 12-15. |
Lin C S. Current status and development trends of synthetic ammonia process technology[J]. Energy Chemical Industry, 2024, 45(1): 12-15. | |
22 | 杨晨. 合成氨工艺增效改善与节能降耗策略研究[J]. 山西化工, 2024, 44(6): 216-218. |
Yang C. Research on efficiency improvement and energy conservation and consumption reduction strategies for synthetic ammonia process[J]. Shanxi Chemical Industry, 2024, 44(6): 216-218. | |
23 | 刘福建, 郑勇, 曹彦宁, 等. 高炉煤气/转炉煤气低碳高效合成氨工艺流程[J]. 过程工程学报, 2023, 23(3): 350-358. |
Liu F J, Zheng Y, Cao Y N, et al. Low-carbon and high-efficiency ammonia synthesis process from blast furnace gas/converter gas[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 350-358. | |
24 | 麻蓉, 张桥. PSA-低温甲醇洗-膜分离耦合的氢气分离系统建立与模拟[J]. 化工学报, 2023, 74(10): 4201-4207. |
Ma R, Zhang Q. Establishment and simulation of hydrogen separation system coupled with PSA, rectisol and membrane separation[J]. CIESC Journal, 2023, 74(10): 4201-4207. | |
25 | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
Zhang S A, Liu G L. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023, 74(3): 1260-1274. | |
26 | 李木金, 胡松, 施德磐, 等. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
Li M J, Hu S, Shi D P, et al. A process for offgas absorption and purification of 1,2-butylene oxide[J]. CIESC Journal, 2023, 74(4): 1607-1618. | |
27 | 张晨佳. 高温固体氧化物电解水制氢性能分析与模拟研究[D]. 北京: 华北电力大学, 2021. |
Zhang C J. Performance analysis and simulation research on hydrogen production by high temperature solid oxide electrolysis[D]. Beijing: North China Electric Power University, 2021. | |
28 | Ishaq H, Dincer I. Design and simulation of a new cascaded ammonia synthesis system driven by renewables[J]. Sustainable Energy Technologies and Assessments, 2020, 40: 100725. |
29 | 王定标, 张荣, 向飒, 等. 氨合成工段过程模拟与优化[J]. 郑州大学学报(工学版), 2009, 30(4): 48-52. |
Wang D B, Zhang R, Xiang S, et al. Simulation and optimization of ammonia synthesis process[J]. Journal of Zhengzhou University (Engineering Science), 2009, 30(4): 48-52. | |
30 | Sánchez M, Amores E, Rodríguez L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
[1] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
[2] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
[3] | 白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595. |
[4] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
[5] | 纪之骄, 张晓方, 甘汶, 薛云鹏. 载体对单原子电催化剂合成氨性能的影响与调控策略[J]. 化工学报, 2025, 76(1): 18-39. |
[6] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[7] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
[8] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
[9] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
[10] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[11] | 张俊杰, 陈源, 李运堂, 李孝禄, 王冰清, 彭旭东. 超椭圆织构浮动坝箔片端面气膜密封动态性能分析与优化[J]. 化工学报, 2025, 76(1): 296-310. |
[12] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[13] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[14] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[15] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||