化工学报 ›› 2025, Vol. 76 ›› Issue (2): 718-730.DOI: 10.11949/0438-1157.20240870
• 分离工程 • 上一篇
贾晶宇1(), 孔德齐1, 沈圆辉2, 张东辉1(
), 李文彬1, 唐忠利1
收稿日期:
2024-08-01
修回日期:
2024-10-22
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
张东辉
作者简介:
贾晶宇(1999—),男,硕士研究生, 2022207456@tju.edu.cn
基金资助:
Jingyu JIA1(), Deqi KONG1, Yuanhui SHEN2, Donghui ZHANG1(
), Wenbin LI1, Zhongli TANG1
Received:
2024-08-01
Revised:
2024-10-22
Online:
2025-03-25
Published:
2025-03-10
Contact:
Donghui ZHANG
摘要:
氨的分离和回收在工业中有着广泛应用,但传统的氨分离方法往往伴随着较高的能耗。变压吸附技术作为一种低能耗、设备简单、操作灵活的气体分离方式,在气体分离领域有着广泛的应用。目前,对于变压吸附氨分离工艺缺乏详细的分析研究。基于此,以简化的合成氨反应器尾气为研究对象,以实验室自制的高硅铝比分子筛HS-1为吸附剂,测定了NH3、N2和H2三种气体在该吸附剂上的吸附数据,为仿真模拟提供了相关参数。提出了一种两塔真空变压吸附工艺,采用数值模拟的方法研究了针对合成氨反应器尾气的氨分离变压吸附工艺,研究了不同操作条件下工艺分离的性能,探究了操作参数对工艺性能的影响。模拟结果表明,在吸附压力5 bar(1 bar=105 Pa),吸附时间250 s,进料量1.2 mol·min-1的条件下,该工艺分离得到的NH3纯度可达89.30%,回收率可达94.67%,分离能耗为38.02 kJ·mol-1。
中图分类号:
贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730.
Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas[J]. CIESC Journal, 2025, 76(2): 718-730.
Step | Bed 1 | Bed 2 | Time/s |
---|---|---|---|
1 | AD | VU | 250 |
2 | ED | ER | 20 |
3 | CoD | PR | 30 |
4 | VU | AD | 250 |
5 | ER | ED | 20 |
6 | PR | CoD | 30 |
表1 VPSA工艺时序
Table 1 VPSA process cycle sequence
Step | Bed 1 | Bed 2 | Time/s |
---|---|---|---|
1 | AD | VU | 250 |
2 | ED | ER | 20 |
3 | CoD | PR | 30 |
4 | VU | AD | 250 |
5 | ER | ED | 20 |
6 | PR | CoD | 30 |
方程 | 数学公式 | |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
(3) | ||
能量守恒方程 | (4) | |
(5) | ||
(6) | ||
动量守恒方程 | (7) | |
吸附等温线方程 | (8) | |
LDF方程 | (9) |
表2 吸附床数学模型
Table 2 The mathematical model of adsorption bed
方程 | 数学公式 | |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
(3) | ||
能量守恒方程 | (4) | |
(5) | ||
(6) | ||
动量守恒方程 | (7) | |
吸附等温线方程 | (8) | |
LDF方程 | (9) |
设备 | 数学模型 | |
---|---|---|
泵 | (10) | |
缓冲罐 | (11) | |
阀门 | (12) |
表3 辅助设备数学模型
Table 3 Mathematical model of auxiliary equipment
设备 | 数学模型 | |
---|---|---|
泵 | (10) | |
缓冲罐 | (11) | |
阀门 | (12) |
指标 | 计算公式 | |
---|---|---|
纯度 | (13) | |
回收率 | (14) | |
能耗 | (15) |
表4 工艺性能评价指标
Table 4 Process performance indicator
指标 | 计算公式 | |
---|---|---|
纯度 | (13) | |
回收率 | (14) | |
能耗 | (15) |
参数 | 数值 |
---|---|
SBET/(m²·g-1) | 258 |
Vtotal/(cm³·g-1) | 0.357 |
Vmic/(cm³·g-1) | 4.77×10-3 |
d/nm | 4.73 |
εb | 0.4 |
εp | 0.73 |
rp/m | 3.26×10-3 |
ρb/(kg·m-3) | 620 |
Cps/(kJ·kg-1·K-1) | 850 |
HTC/(W·m-2·K-1) | 235 |
kg/(W·m-1·K-1) | 0.024 |
ks/(W·m-2·K-1) | 0.2 |
0.01 | |
0.005 | |
0.012 | |
6.41×10-5 | |
2.13×10-5 | |
2.13×10-5 | |
20.26 | |
20.86 | |
11.39 |
表5 吸附剂参数
Table 5 Parameters of the adsorbent
参数 | 数值 |
---|---|
SBET/(m²·g-1) | 258 |
Vtotal/(cm³·g-1) | 0.357 |
Vmic/(cm³·g-1) | 4.77×10-3 |
d/nm | 4.73 |
εb | 0.4 |
εp | 0.73 |
rp/m | 3.26×10-3 |
ρb/(kg·m-3) | 620 |
Cps/(kJ·kg-1·K-1) | 850 |
HTC/(W·m-2·K-1) | 235 |
kg/(W·m-1·K-1) | 0.024 |
ks/(W·m-2·K-1) | 0.2 |
0.01 | |
0.005 | |
0.012 | |
6.41×10-5 | |
2.13×10-5 | |
2.13×10-5 | |
20.26 | |
20.86 | |
11.39 |
参数 | 数值 |
---|---|
Hb/m | 0.44 |
Db/m | 0.0283 |
Wt/m | 0.00175 |
ρw/(kg·m-3) | 7800 |
Cpw/(kJ·kg-1·K-1) | 0.502 |
hw/(W·m-2·K-1) | 60 |
hamb/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 0.342 |
表6 吸附塔参数
Table 6 Parameters of the adsorption column
参数 | 数值 |
---|---|
Hb/m | 0.44 |
Db/m | 0.0283 |
Wt/m | 0.00175 |
ρw/(kg·m-3) | 7800 |
Cpw/(kJ·kg-1·K-1) | 0.502 |
hw/(W·m-2·K-1) | 60 |
hamb/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 0.342 |
参数 | NH3 | N2 | H2 |
---|---|---|---|
IP1/(mmol·g-1) | 0.5315 | 7.442×10-4 | 3.946×10-4 |
IP2/bar-1 | 0.5675 | 0.5784 | 0.6080 |
IP3 | 0.1653 | 1.011 | 0.9033 |
IP4/K | 517.2 | 1209 | 1074 |
IP5/bar-1 | -0.06188 | 2.513×10-3 | -3.893×10-4 |
IP6/K | 611.3 | 496.8 | 1461 |
R2 | 0.9905 | 0.9989 | 0.9959 |
表7 NH3、N2和H2的吸附等温线拟合参数
Table 7 Fitting parameters of adsorption isotherms of NH3, N2 and H2
参数 | NH3 | N2 | H2 |
---|---|---|---|
IP1/(mmol·g-1) | 0.5315 | 7.442×10-4 | 3.946×10-4 |
IP2/bar-1 | 0.5675 | 0.5784 | 0.6080 |
IP3 | 0.1653 | 1.011 | 0.9033 |
IP4/K | 517.2 | 1209 | 1074 |
IP5/bar-1 | -0.06188 | 2.513×10-3 | -3.893×10-4 |
IP6/K | 611.3 | 496.8 | 1461 |
R2 | 0.9905 | 0.9989 | 0.9959 |
No. | H2 | N2 | NH3 | |||
---|---|---|---|---|---|---|
q/(mmol·g-1) | ΔH/(kJ·mol-1) | q/(mmol·g-1) | ΔH/(kJ·mol-1) | q/(mmol·g-1) | ΔH/(kJ·mol-1) | |
1 | 0.001 | 9.90 | 0.004 | 9.96 | 0.331 | 26.41 |
2 | 0.005 | 9.97 | 0.018 | 10.01 | 0.905 | 26.96 |
3 | 0.008 | 10.03 | 0.032 | 10.06 | 1.479 | 27.39 |
4 | 0.012 | 10.10 | 0.047 | 10.12 | 2.053 | 27.73 |
5 | 0.016 | 10.16 | 0.061 | 10.17 | 2.627 | 28.00 |
6 | 0.020 | 10.22 | 0.076 | 10.23 | 3.201 | 28.23 |
7 | 0.024 | 10.28 | 0.090 | 10.29 | 3.775 | 28.43 |
8 | 0.028 | 10.34 | 0.105 | 10.35 | 4.350 | 28.60 |
9 | 0.032 | 10.39 | 0.119 | 10.41 | 4.924 | 28.74 |
10 | 0.036 | 10.44 | 0.134 | 10.47 | 5.498 | 28.87 |
11 | 0.040 | 10.49 | 0.148 | 10.53 | 6.072 | 28.98 |
12 | 0.043 | 10.54 | 0.163 | 10.60 | 6.646 | 29.08 |
Average | 10.24 | 10.27 | 28.12 |
表8 NH3、N2和H2的吸附热计算结果
Table 8 Calculation results of adsorption heat of NH3, N2 and H2
No. | H2 | N2 | NH3 | |||
---|---|---|---|---|---|---|
q/(mmol·g-1) | ΔH/(kJ·mol-1) | q/(mmol·g-1) | ΔH/(kJ·mol-1) | q/(mmol·g-1) | ΔH/(kJ·mol-1) | |
1 | 0.001 | 9.90 | 0.004 | 9.96 | 0.331 | 26.41 |
2 | 0.005 | 9.97 | 0.018 | 10.01 | 0.905 | 26.96 |
3 | 0.008 | 10.03 | 0.032 | 10.06 | 1.479 | 27.39 |
4 | 0.012 | 10.10 | 0.047 | 10.12 | 2.053 | 27.73 |
5 | 0.016 | 10.16 | 0.061 | 10.17 | 2.627 | 28.00 |
6 | 0.020 | 10.22 | 0.076 | 10.23 | 3.201 | 28.23 |
7 | 0.024 | 10.28 | 0.090 | 10.29 | 3.775 | 28.43 |
8 | 0.028 | 10.34 | 0.105 | 10.35 | 4.350 | 28.60 |
9 | 0.032 | 10.39 | 0.119 | 10.41 | 4.924 | 28.74 |
10 | 0.036 | 10.44 | 0.134 | 10.47 | 5.498 | 28.87 |
11 | 0.040 | 10.49 | 0.148 | 10.53 | 6.072 | 28.98 |
12 | 0.043 | 10.54 | 0.163 | 10.60 | 6.646 | 29.08 |
Average | 10.24 | 10.27 | 28.12 |
参数 | 数值 |
---|---|
Tfeed/K | 298.15 |
Tamb/K | 298.15 |
Pfeed/bar | 5.0 |
PAD/bar | 5.0 |
PVU/bar | 0.1 |
Qfeed/(mol·min-1) | 1.2 |
VBuffer/m3 | 1.0×10-3 |
表9 工艺操作条件参数
Table 9 Parameters of the process operation
参数 | 数值 |
---|---|
Tfeed/K | 298.15 |
Tamb/K | 298.15 |
Pfeed/bar | 5.0 |
PAD/bar | 5.0 |
PVU/bar | 0.1 |
Qfeed/(mol·min-1) | 1.2 |
VBuffer/m3 | 1.0×10-3 |
初始条件 |
---|
表10 吸附床数学模型的初始条件
Table 10 Initial conditions for mathematical model of adsorption bed
初始条件 |
---|
步骤 | z=0 | z=L |
---|---|---|
Adsorption(AD) | ||
Equalization depressurization(ED) | ||
Co-current blowdown(CoD) | ||
Vacuum(VU) | ||
Equalization repressurization(ER) | ||
Pressurization(PR) |
表11 不同步骤下吸附床模型的边界条件
Table 11 Boundary conditions of adsorption bed models at different steps
步骤 | z=0 | z=L |
---|---|---|
Adsorption(AD) | ||
Equalization depressurization(ED) | ||
Co-current blowdown(CoD) | ||
Vacuum(VU) | ||
Equalization repressurization(ER) | ||
Pressurization(PR) |
序号 | 进料量/ (mol·min-1) | 原料气组成 (NH3∶H2∶N2)/%(体积) | 吸附时长/s | 吸附压力/bar | 纯度/% | 回收率/% | 能耗/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
1 | 1.2 | 15∶63.75∶21.25 | 230 | 5 | 88.78 | 95.28 | 37.78 |
2 | 1.2 | 15∶63.75∶21.25 | 240 | 5 | 89.04 | 94.99 | 37.90 |
3 | 1.2 | 15∶63.75∶21.25 | 250 | 5 | 89.30 | 94.67 | 38.02 |
4 | 1.2 | 15∶63.75∶21.25 | 260 | 5 | 89.54 | 94.32 | 38.19 |
5 | 1.2 | 15∶63.75∶21.25 | 270 | 5 | 89.77 | 93.94 | 38.35 |
6 | 0.8 | 15∶63.75∶21.25 | 250 | 5 | 85.29 | 99.72 | 35.80 |
7 | 1.0 | 15∶63.75∶21.25 | 250 | 5 | 87.75 | 98.38 | 38.34 |
9 | 1.4 | 15∶63.75∶21.25 | 250 | 5 | 90.42 | 88.48 | 40.57 |
10 | 1.6 | 15∶63.75∶21.25 | 250 | 5 | 91.06 | 81.59 | 43.92 |
11 | 1.2 | 15∶63.75∶21.25 | 250 | 4 | 89.58 | 87.90 | 35.48 |
12 | 1.2 | 15∶63.75∶21.25 | 250 | 4.5 | 89.51 | 91.83 | 36.73 |
13 | 1.2 | 15∶63.75∶21.25 | 250 | 5.5 | 89.03 | 96.55 | 39.45 |
14 | 1.2 | 15∶63.75∶21.25 | 250 | 6 | 88.51 | 98.10 | 40.75 |
15 | 1.2 | 10∶22.5∶67.5 | 250 | 5 | 84.45 | 98.74 | 46.48 |
17 | 1.2 | 12.5∶21.875∶65.625 | 250 | 5 | 87.23 | 97.09 | 44.66 |
18 | 1.2 | 17.5∶20.625∶61.875 | 250 | 5 | 91.00 | 91.20 | 33.75 |
19 | 1.2 | 20∶20∶60 | 250 | 5 | 92.23 | 87.23 | 33.67 |
表12 不同操作条件下模拟结果汇总
Table 12 Summary of simulation results under different operating conditions
序号 | 进料量/ (mol·min-1) | 原料气组成 (NH3∶H2∶N2)/%(体积) | 吸附时长/s | 吸附压力/bar | 纯度/% | 回收率/% | 能耗/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
1 | 1.2 | 15∶63.75∶21.25 | 230 | 5 | 88.78 | 95.28 | 37.78 |
2 | 1.2 | 15∶63.75∶21.25 | 240 | 5 | 89.04 | 94.99 | 37.90 |
3 | 1.2 | 15∶63.75∶21.25 | 250 | 5 | 89.30 | 94.67 | 38.02 |
4 | 1.2 | 15∶63.75∶21.25 | 260 | 5 | 89.54 | 94.32 | 38.19 |
5 | 1.2 | 15∶63.75∶21.25 | 270 | 5 | 89.77 | 93.94 | 38.35 |
6 | 0.8 | 15∶63.75∶21.25 | 250 | 5 | 85.29 | 99.72 | 35.80 |
7 | 1.0 | 15∶63.75∶21.25 | 250 | 5 | 87.75 | 98.38 | 38.34 |
9 | 1.4 | 15∶63.75∶21.25 | 250 | 5 | 90.42 | 88.48 | 40.57 |
10 | 1.6 | 15∶63.75∶21.25 | 250 | 5 | 91.06 | 81.59 | 43.92 |
11 | 1.2 | 15∶63.75∶21.25 | 250 | 4 | 89.58 | 87.90 | 35.48 |
12 | 1.2 | 15∶63.75∶21.25 | 250 | 4.5 | 89.51 | 91.83 | 36.73 |
13 | 1.2 | 15∶63.75∶21.25 | 250 | 5.5 | 89.03 | 96.55 | 39.45 |
14 | 1.2 | 15∶63.75∶21.25 | 250 | 6 | 88.51 | 98.10 | 40.75 |
15 | 1.2 | 10∶22.5∶67.5 | 250 | 5 | 84.45 | 98.74 | 46.48 |
17 | 1.2 | 12.5∶21.875∶65.625 | 250 | 5 | 87.23 | 97.09 | 44.66 |
18 | 1.2 | 17.5∶20.625∶61.875 | 250 | 5 | 91.00 | 91.20 | 33.75 |
19 | 1.2 | 20∶20∶60 | 250 | 5 | 92.23 | 87.23 | 33.67 |
1 | Amhamed A I, Shuibul Qarnain S, Hewlett S, et al. Ammonia production plants—a review[J]. Fuels, 2022, 3(3): 408-435. |
2 | Smil V. Nitrogen and food production: proteins for human diets[J]. Ambio, 2002, 31(2): 126-131. |
3 | Smil V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production[M]. Cambridge: MIT Press, 2001. |
4 | Cheremisinoff N P, Rosenfeld P E. Best practices in the agrochemical industry[M]//Handbook of Pollution Prevention and Cleaner Production. New York: William Andrew Publishing, 2010. |
5 | Pearson A. Refrigeration with ammonia[J]. International Journal of Refrigeration, 2008, 31(4): 545-551. |
6 | Kristiana I, Lethorn A, Joll C, et al. To add or not to add: the use of quenching agents for the analysis of disinfection by-products in water samples[J]. Water Research, 2014, 59: 90-98. |
7 | Selvam M, Vigneshwaran M, Irudhayaraj R, et al. Emission control diesel power plant for reducing oxides of nitrogen through selective catalytic reduction method using ammonia[J]. Indian Journal of Science and Technology, 2016, 9(1): 1-7. |
8 | 毕马威中国. 固碳、储氢、航运燃料、掺混发电: 绿氨行业概览与展望[EB/OL]. 2022[2024-07-30]. . |
KPMG China. Carbon sequestration, hydrogen storage, shipping fuels, and blended power generation: Overview and prospects of the green ammonia industry[EB/OL]. 2022[2024-07-30]. . | |
9 | El-Shafie M, Kambara S. Recent advances in ammonia synthesis technologies: toward future zero carbon emissions[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11237-11273. |
10 | Ammonia Energy Association. Marine ammonia engines: working towards deployment in Japan[EB/OL]. 2024[2024-07-30]. . |
11 | National Aeronautics and Space Administration. X-15 hypersonic research program[EB/OL]. 2014[2024-07-30]. . |
12 | Guo J P, Chen P. Catalyst: NH3 as an energy carrier[J]. Chem, 2017, 3(5): 709-712. |
13 | The Royal Society. Ammonia: zero-carbon fertiliser, fuel and energy store[EB/OL]. 2020[2024-07-30]. . |
14 | Smith C, Hill A K, Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape[J]. Energy & Environmental Science, 2020, 13(2): 331-344. |
15 | Liu H Z. Ammonia Synthesis Catalysts: Innovation and Practice[M]. Singapore: World Scientific Publishing, 2013. |
16 | Mario G. Process for the separation of ammonia produced in medium and low pressure synthesizing plants: US3354615[P]. 1967-11-28. |
17 | Wei Q S, Lucero J M, Crawford J M, et al. Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes[J]. Journal of Membrane Science, 2021, 623: 119078. |
18 | Padinjarekutt S, Sengupta B, Li H Z, et al. Synthesis of Na+-gated nanochannel membranes for the ammonia (NH3) separation[J]. Journal of Membrane Science, 2023, 674: 121512. |
19 | Skarstrom C W. Method and apparatus for fractionating gaseous mixtures by adsorption: US2944627[P]. 1960-07-12. |
20 | Knaebel K S, Cussler E L. A novel pressure swing adsorption system for ammonia synthesis[M]//LeVan M D. The Kluwer International Series in Engineering and Computer Science. Boston, MA: Springer US, 1996: 457-464. |
21 | Bhadra S J. Purification of ammonia by pressure swing adsorption[D]. South Carolina: University of South Carolina, 2012. |
22 | Adsim Aspen. Adsorption Reference Guide[M]. Cambridge, MA: Aspen Technology Inc., 2004. |
23 | Sips R. Combined form of Langmuir and Freundlich equations[J]. Journal of Physical Chemistry, 1948, 16(429): 490-495. |
24 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
25 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
26 | Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6562-6575. |
27 | Chen S R, Shen Y H, Guan Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
28 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
29 | Park D, Ju Y, Kim J H, et al. Equilibrium and kinetics of nitrous oxide, oxygen and nitrogen adsorption on activated carbon and carbon molecular sieve[J]. Separation and Purification Technology, 2019, 223: 63-80. |
30 | Knaebel S P, Ko D, Biegler L T. Simulation and optimization of a pressure swing adsorption system: recovering hydrogen from methane[J]. Adsorption, 2005, 11(1): 615-620. |
[1] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
[2] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
[3] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
[4] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[5] | 邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347. |
[6] | 纪之骄, 张晓方, 甘汶, 薛云鹏. 载体对单原子电催化剂合成氨性能的影响与调控策略[J]. 化工学报, 2025, 76(1): 18-39. |
[7] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
[8] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
[9] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[10] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[11] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[12] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[13] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[14] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[15] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||