化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3842-3852.DOI: 10.11949/0438-1157.20250026
张淇栋1(
), 艾立强2, 马原1(
), 吴胜宝2(
), 王磊1, 厉彦忠1
收稿日期:2025-01-07
修回日期:2025-02-22
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
马原,吴胜宝
作者简介:张淇栋(2000—),男,硕士研究生,525728536@qq.com
基金资助:
Qidong ZHANG1(
), Liqiang AI2, Yuan MA1(
), Shengbao WU2(
), Lei WANG1, Yanzhong LI1
Received:2025-01-07
Revised:2025-02-22
Online:2025-08-25
Published:2025-09-17
Contact:
Yuan MA, Shengbao WU
摘要:
为进一步掌握低温管路预冷过程中两相流动与沸腾换热的特性规律,以液氮传输管路为对象构建低温管路预冷过程热流耦合数值模型,基于一维漂移流模型重点考虑了气液相间滑移速度的影响,计算得到了预冷过程中管壁温度、含气率、热通量与气液相间滑移速度的变化规律,并对比分析了不同时刻、不同管路位置及不同管长下平均速度和质量流速的波动情况。结果表明,漂移流模型能够更为准确地预测预冷过程的两相流动换热特性,壁面降温结果较均相流模型误差降低3.9%;预冷过程大部分为两相流动区间,气液相间滑移速度不可忽略,且含气率越高平均气相滑移速度较均相流模型偏移越大;预冷过程平均速度和质量流速存在显著波动,针对0.572 m长的管路,平均速度波动幅度接近1.5 m/s,平均质量流速波动的最大幅度接近45 kg/(m2·s);管长对于质量流速波动影响显著,管路越长平均质量流速波动幅度越大,对于同一根管道,下游位置处的质量流速波动幅度比上游更剧烈。研究成果对于深入理解和优化低温管路的预冷过程具有重要意义。
中图分类号:
张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852.
Qidong ZHANG, Liqiang AI, Yuan MA, Shengbao WU, Lei WANG, Yanzhong LI. Research on two-phase flow and heat transfer characteristics in precooling process of low-temperature pipelines based on one-dimensional drift-flux model[J]. CIESC Journal, 2025, 76(8): 3842-3852.
| 含气率 | 分布参数C0 | 加权滑移速度 |
|---|---|---|
0.4< 0.6< | ||
表1 分布参数和加权滑移速度计算公式
Table 1 Calculation formula for distribution parameters and weighted slip velocity
| 含气率 | 分布参数C0 | 加权滑移速度 |
|---|---|---|
0.4< 0.6< | ||
| 临界点和换热工况 | 模型 | 关联式 | 误差 |
|---|---|---|---|
| 膜态沸腾起始温度TLFP | Jin关联式[ | ±5% | |
| 临界热通量qCHF | 修正Katto公式[ | ±30% | |
| 临界热流温度TCHF | Kalinin[ | — | |
| 核态沸腾起始点TONB | Darr[ | — | |
| 膜态沸腾区 | Darr[ | 30%以内 | |
| 过渡沸腾区 | 线性插值 | 根据临界热流壁温TCHF与最低膜态沸腾温度TLFP插值计算 | — |
| 核态沸腾区 | 线性插值 | 根据临界热流壁温TCHF与核态沸腾起始温度TONB插值计算 | — |
| 液/气相强制对流区 | Dittus-Boelter公式[ | — |
表2 流体与管壁换热计算公式
Table 2 Calculation formula for heat transfer between fluid and pipe wall
| 临界点和换热工况 | 模型 | 关联式 | 误差 |
|---|---|---|---|
| 膜态沸腾起始温度TLFP | Jin关联式[ | ±5% | |
| 临界热通量qCHF | 修正Katto公式[ | ±30% | |
| 临界热流温度TCHF | Kalinin[ | — | |
| 核态沸腾起始点TONB | Darr[ | — | |
| 膜态沸腾区 | Darr[ | 30%以内 | |
| 过渡沸腾区 | 线性插值 | 根据临界热流壁温TCHF与最低膜态沸腾温度TLFP插值计算 | — |
| 核态沸腾区 | 线性插值 | 根据临界热流壁温TCHF与核态沸腾起始温度TONB插值计算 | — |
| 液/气相强制对流区 | Dittus-Boelter公式[ | — |
| 尺寸 | 工质 | 绝热方式 | 流动方向 | 实验序号 | 质量流速G/(kg/(m2·s)) | 入口温度/K | 入口压力/MPa |
|---|---|---|---|---|---|---|---|
Dout=12.70 mm D=11.68 mm L =572 mm | 液氮 | 真空绝热 | 竖直向上 | 1 2 3 | 126 220 324 | 饱和温度 | 0.18 0.25 0.42 |
表3 模型验证所用实验工况
Table 3 Experimental conditions used for model validation
| 尺寸 | 工质 | 绝热方式 | 流动方向 | 实验序号 | 质量流速G/(kg/(m2·s)) | 入口温度/K | 入口压力/MPa |
|---|---|---|---|---|---|---|---|
Dout=12.70 mm D=11.68 mm L =572 mm | 液氮 | 真空绝热 | 竖直向上 | 1 2 3 | 126 220 324 | 饱和温度 | 0.18 0.25 0.42 |
| [1] | Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic transfer line chilldown(Ⅰ): Effect of mass flux, equilibrium quality, and inlet subcooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1225-1242. |
| [2] | Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic tube chilldown(Ⅱ): Effect of flow direction with respect to gravity and new correlation set[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1243-1260. |
| [3] | Darr S R, Hartwig J W. Two-phase convection heat transfer correlations for liquid hydrogen pipe chilldown[J]. Cryogenics, 2020, 105: 102999. |
| [4] | Darr S R, Hartwig J W, Dong J, et al. Two-phase pipe quenching correlations for liquid nitrogen and liquid hydrogen[J]. Journal of Heat Transfer, 2019, 141(4): 042901. |
| [5] | 王娇娇, 厉彦忠, 王鑫宝, 等. 低温推进剂管路预冷沸腾换热特性研究综述[J]. 宇航学报, 2017, 38(8): 779-788. |
| Wang J J, Li Y Z, Wang X B, et al. Review of cryogenic boiling heat transfer during pipe chilldown[J]. Journal of Astronautics, 2017, 38(8): 779-788. | |
| [6] | Wang H, Huang B H, Dong J, et al. Enhancement and optimization of cryogenic metal tube chilldown heat transfer using thin-film coating(Ⅰ): Effects of flow mass flux and coating layer thickness[J]. International Communications in Heat and Mass Transfer, 2024, 153: 107368. |
| [7] | Wang H, Huang B H, Dong J, et al. Enhancement and optimization of cryogenic metal tube chilldown heat transfer using thin-film coating(Ⅱ): Chilldown efficiency, flow direction and tube wall thickness[J]. International Communications in Heat and Mass Transfer, 2024, 153: 107369. |
| [8] | Kunniyoor K R, Kunniyoor V, Ghosh P. Development of constitutive relations for predicting film boiling crisis in bare and inner wall coated cryogenic tubes with a low-thermal conductive layer for heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125112. |
| [9] | Kunniyoor K R, Ghosh P. Development of transient flow film boiling heat transfer correlations for energy efficient cryogenic fluid management during feed line quenching operation[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123806. |
| [10] | Hartwig J, Ganesan V, Johnson A, et al. A continuous flow boiling curve in the heating configuration based on new cryogenic universal correlations[J]. Applied Thermal Engineering, 2024, 248: 123235. |
| [11] | Darr S R, Hu H, Shaeffer R, et al. Numerical simulation of the liquid nitrogen chilldown of a vertical tube[C]//53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, 2015: AIAA2015-0468. |
| [12] | Jin L X, Cho H, Lee C, et al. Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, 89: 42-52. |
| [13] | 王娇娇, 陈虹, 厉彦忠, 等. 低温管路预冷过程两相流动与换热计算研究[J]. 西安交通大学学报, 2019, 53(1): 93-99. |
| Wang J J, Chen H, Li Y Z, et al. Research on the two-phase flow and heat transfer characteristics of cryogenic pipeline chill-down process[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 93-99. | |
| [14] | Liao J. Modeling two-phase transport during cryogenic chilldown in a pipeline[D]. Gainesville, FL, USA: University of Florida, 2005. |
| [15] | Zhang Q, Wang H Y, Li J L, et al. Experimental study on flow resistance and phase distribution of gas-liquid flow in helical cruciform fuel assembly[J]. Annals of Nuclear Energy, 2025, 210: 110838. |
| [16] | 刘佳伦, 李会雄, 张顺哲, 等. 基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析[J]. 核动力工程, 2023, 44(3): 79-89. |
| Liu J L, Li H X, Zhang S Z, et al. Analysis on thermal hydraulic characteristic of helical coiled tube steam generator of liquid metal fast reactor based on drift-flux model[J]. Nuclear Power Engineering, 2023, 44(3): 79-89. | |
| [17] | Barati H, Hibiki T. Two-group drift-flux model for dispersed gas-liquid flows in annuli[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125448. |
| [18] | Sun H M, Hibiki T. Two-group drift-flux model for upward cap-bubbly two-phase flows in large square channels[J]. International Journal of Heat and Mass Transfer, 2025, 237: 126445. |
| [19] | Mirzaee M M, Zolfaghari A, Minuchehr A, et al. A drift-flux analysis of the diversely heated channel using the Broyden method[J]. Applied Thermal Engineering, 2019, 150: 464-481. |
| [20] | Wu W Q, Huang T, Du P, et al. Development of a two-phase flow solver with drift-flux model based on OpenFOAM: validation against single/two-phase and boiling flow[J]. Annals of Nuclear Energy, 2025, 213: 111179. |
| [21] | Wang J J, Li Y Z, Wang L, et al. Thermal prediction of transient two-phase flow in cryogenic transportation based on drift-flux model[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121512. |
| [22] | Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow[M]. Boston, MA: Springer US, 2006. |
| [23] | Hibiki T, Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes[J]. International Journal of Heat and Mass Transfer, 2003, 46(25): 4935-4948. |
| [24] | Schlegel J, Hibiki T, Ishii M. Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters[J]. Progress in Nuclear Energy, 2010, 52(7): 666-677. |
| [25] | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
| [26] | Nukiyama S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 1966, 9(12): 1419-1433. |
| [27] | 王娇娇. 火箭低温推进剂地面加注与在轨传输过程两相传热特性研究[D]. 西安: 西安交通大学, 2021. |
| Wang J J. Research on the two phase heat transfer characteristics of low temperature rocket propellant during ground filling and in orbit transmission[D]. Xi'an: Xi'an Jiaotong University, 2021. | |
| [28] | Kalinin E, Yarkho S, Berlin I, et al. Investigation of the crisis of film boiling in channels[R]. Moscow Aviation Inst., 1969. |
| [29] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 232-233. |
| Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 232-233. | |
| [30] | Patankar S. Numerical Heat Transfer and Fluid Flow[M]. New York: Hemisphere Publishing Corporation, 1980. |
| [31] | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
| Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [6] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [7] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [8] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [9] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [10] | 吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016. |
| [11] | 徐成龙, 李果, 王玉, 谢林生, 张国辉, 梁鹏飞. 等弧厚复杂药型螺压成型模具的模拟仿真研究[J]. 化工学报, 2025, 76(8): 3954-3963. |
| [12] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [13] | 梁晓江, 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇. 电分散管式填充床中荷电气泡的分散特性研究[J]. 化工学报, 2025, 76(8): 3915-3931. |
| [14] | 陈佳祥, 周伟, 张学伟, 王丽杰, 黄玉明, 于洋, 孙苗婷, 李宛静, 袁骏舒, 张宏博, 孟晓晓, 高继慧, 赵广播. 脉冲电压下二维PEMWE模型的制氢特性仿真研究[J]. 化工学报, 2025, 76(7): 3521-3530. |
| [15] | 龚宇, 王胜利, 孙金菊, 海阔, 黄文. 微型多级压缩机充气系统的热力学模型及规律探究[J]. 化工学报, 2025, 76(7): 3626-3638. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号