化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1714-1723.doi: 10.11949/0438-1157.20211584

• 能源和环境工程 • 上一篇    下一篇

绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究

孟文亮1,2(),李贵贤1,2(),周怀荣1,2,李婧玮1,2,王健1,2,王可1,2,范学英3,王东亮1,2()   

  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.甘肃省低碳能源化工重点实验室,甘肃 兰州 730050
    3.中国石油兰州石化公司自动化研究院,甘肃 兰州 730060
  • 收稿日期:2021-11-09 修回日期:2021-12-22 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 李贵贤,王东亮 E-mail:mengwla@163.com;lgxwyf@163.com;wangdl@lut.edu.cn
  • 作者简介:孟文亮(1996—),男,博士研究生,mengwla@163.com
  • 基金资助:
    甘肃省科技重大专项(19ZD2GD001);甘肃省高等学校产业支撑计划项目(2020C-06)

A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen

Wenliang MENG1,2(),Guixian LI1,2(),Huairong ZHOU1,2,Jingwei LI1,2,Jian WANG1,2,Ke WANG1,2,Xueying FAN3,Dongliang WANG1,2()   

  1. 1.School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, Gansu, China
    3.Automation Institute, PetroChina Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
  • Received:2021-11-09 Revised:2021-12-22 Published:2022-04-05 Online:2022-04-25
  • Contact: Guixian LI,Dongliang WANG E-mail:mengwla@163.com;lgxwyf@163.com;wangdl@lut.edu.cn

摘要:

在“碳达峰、碳中和”的背景下,传统煤制甲醇工艺存在CO2排放强度大、能耗高等问题成为制约煤制甲醇工艺发展的瓶颈问题。本研究基于外源性的绿氢,重构粉煤气化煤制甲醇工艺,省掉了空分单元、变换单元,开发了短流程低温甲醇洗单元,提出了粉煤气化集成绿氢的近零碳排放煤制甲醇新工艺。从碳元素利用率、CO2排放、成本分析等角度对新工艺进行了评价。结果表明,与传统煤制甲醇工艺相比,新工艺碳元素利用率从41.50%提高到95.77%,CO2直接排放量由1.939降低至0.035 t·(t MeOH)-1,通过分析H2价格与碳税对产品成本的影响发现,当氢气价格和碳税分别为10.36 CNY·(kg H2)-1和223.3 CNY·(t CO2)-1时,两种工艺的产品成本相当。新工艺不仅减少了煤制甲醇过程碳排放,而且可以提高可再生能源就地消纳能力,具有良好的应用前景。

关键词: 煤制甲醇, 绿氢, 二氧化碳, 过程集成, 过程系统, 优化设计

Abstract:

In the context of “Emission peak, Carbon neutrality”, high CO2 emission intensity, and low carbon utilization efficiency greatly restrict the development of the coal to methanol(CTM) process. A novel CTM process is proposed in the paper,which is near zero carbon emission by pulverized coal gasification integrated green hydrogen. In this case, the air separator and water-gas shift units can be eliminated, and acid gas removal unit also can be simplified. The key parameters are analyzed on the basis of established model of the two processes. The advantages of novel process are manifested in detail in comparison with the CTM process. The results show that the carbon utilization rate of the CTM process and the novel process are 41.50% and 95.77%, and the CO2 direct emission intensity is decreased from 1.939 to 0.035 t·(t MeOH)-1. An analysis of the impact of hydrogen prices and carbon taxes on product costs reveals that when the hydrogen price and carbon tax are 10.36 CNY·(kg H2)-1 and 223.3 CNY·(t CO2)-1, the production cost of two processes is equal. The new technology not only reduces carbon emissions from the CTM process, but also improves the on-site absorption capacity of renewable energy, which has good application prospects.

Key words: coal to methanol, green hydrogen, carbon dioxide, process integration, process systems, optimal design

中图分类号: 

  • TQ 536.9

图1

煤制甲醇工艺流程框图"

图2

近零碳排放煤制甲醇新工艺流程框图"

图3

传统煤制甲醇工艺低温甲醇洗单元"

图4

短流程的低温甲醇洗单元"

图5

甲醇贫液量与酸气吸收塔塔顶酸气摩尔流量关系"

图6

甲醇合成反应器温度和压力对甲醇摩尔流量的影响"

表2

工艺模拟的关键参数"

传统煤制甲醇工艺近零碳排放的煤制甲醇新工艺
煤气化单元煤气化单元
气化温度/℃1554气化温度/℃1554
气化压力/MPa8.8气化压力/MPa8.8
煤转化率/%>99煤转化率/%>99
水煤气变换单元电解水制氢单元
高/低变温度/℃350/220工作效率/%70~90
压力/MPa3工作压力/MPa3.2
蒸汽/CO摩尔比0.94能耗/(kWh·m-3)3.8~5.0
低温甲醇洗单元短流程的低温甲醇洗单元
H2S移除率/%(mol)100H2S移除率/%(mol)100
CO2移除率/%(mol)96CO2移除率/%(mol)30
甲醇合成单元甲醇合成单元
催化剂Cu/ZnO/Al2O3催化剂Cu/ZnO/Al2O3
未反应气循环比/%99未反应气循环比/%99
温度/℃240温度/℃250
压力/MPa8压力/MPa8
甲醇精馏单元甲醇精馏单元
甲醇回收率/%(mol)99.9甲醇回收率/%(mol)99.9
精甲醇纯度/%(mass)99.9精甲醇纯度/%(mass)99.9

表3

传统煤制甲醇工艺模拟结果"

流股温度/℃压力/MPa摩尔分数/%

摩尔流量/

(kmol·h-1)

质量流量/

(kg·h-1)

N2O2H2OCOCO2H2SH2CH3OH
1250.1N/AN/AN/AN/AN/AN/AN/AN/A100000
221040.5806.5162.654.030.126.1309841.63208608
39040.4400.2420.6930.750.0847.8012798262163
4300.26.31000.3193.200.170.013240.81138965
5302.80.630029.381.84068.1508965.7594945
6410.1005.0600.140094.82904.7391055
7670.1000.18000099.822755.8388117.89

表4

近零碳排放的煤制甲醇新工艺模拟结果"

流股温度/℃压力/MPa摩尔分数/%

摩尔流量/

(kmol·h-1)

质量流量/

(kg·h-1)

N2O2H2OCOCO2H2SH2CH3OH
1250.1N/AN/AN/AN/AN/AN/AN/AN/A100000
2863.201000000002343.7575000
321040.2606.5362.854.040.0126.2109841.63208614
4302.80.290068.153.11028.4409062.82191368
5863.2000000100011396.0322792
6410.1003.7500.130096.126620.84208758
7670.1000.18000099.826368.89203646

图7

碳流图(单位:kmol·h-1)CG—煤气化单元(coal gasification);WGS—水煤气变换单元(water gas shift);AGR—酸气脱除单元(acid gas removal);MS—甲醇合成单元(methanol synthesis);MD—甲醇精馏单元(methanol distillation);SAGR—短流程酸气脱除单元(simplified acid gas removal)"

表5

两种工艺不同单元能量消耗情况"

工艺能耗/(MJ·(kg MeOH))-1
ASCGWGSAGRSAGRMSMD
传统煤制甲醇工艺4.2-3.0-1.95.5-1.62.5
近零碳排放的煤制甲醇新工艺-1.30.8-1.62.4

图8

传统煤制甲醇工艺和新工艺产品成本"

图9

产品成本对氢气价格和碳税的敏感性分析"

1 Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342.
2 Chen Q Q, Lv M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620.
3 Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866.
4 唐志永, 孙予罕, 江绵恒. 低碳复合能源系统——中国未来能源的解决方案和发展模式? [J].中国科学, 2013, 43(1): 116-124.
Tang Z Y, Sun Y H, Jiang M H. Low-carbon hybrid energy systems: future energy solutions and development models in China?[J]. Scientia sinica Chimica 43(1): 116-124.
5 Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54.
6 Chen J J, Yang S Y, Qian Y. A novel path for carbon-rich resource utilization with lower emission and higher efficiency: an integrated process of coal gasification and coking to methanol production[J]. Energy, 2019, 177: 304-318.
7 Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070.
8 刘硕士, 杨思宇, 顾竞芳, 等. 气煤联供实现资源高效利用和碳减排技术进展[J]. 化工进展, 2019, 38(1): 664-671.
Liu S S, Yang S Y, Gu J F, et al. Review on coal and gas co-feed processes for better resource use and lower carbon emission[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 664-671.
9 Qin Z, Zhai G F, Wu X M, et al. Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment[J]. Energy Conversion and Management, 2016, 124: 168-179.
10 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8.
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8.
11 Qin Z, Bhattacharya S, Tang K, et al. Effects of gasification condition on the overall performance of methanol-electricity polygeneration system[J]. Energy Conversion and Management, 2019, 184: 362-373.
12 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869.
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869.
13 Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970.
14 东赫, 刘金昌, 解强, 等. 典型气流床煤气化炉气化过程的建模[J]. 化工进展, 2016, 35(8): 2426-2431.
Dong H, Liu J C, Xie Q, et al. Modeling of coal gasification reaction in typical entrained-flow coal gasifiers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2426-2431.
15 Qin S Y, Chang S Y, Yao Q. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432.
16 Park N, Park M J, Ha K S, et al. Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: perspective on methanol production and CO2 utilization[J]. Fuel, 2014, 129: 163-172.
17 Bussche K M V, Froment G F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis, 1996, 161(1): 1-10.
18 Cui C T, Sun J S, Li X G. A hybrid design combining double-effect thermal integration and heat pump to the methanol distillation process for improving energy efficiency[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 81-92.
19 Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57.
20 Sun L, Smith R. Rectisol wash process simulation and analysis[J]. Journal of Cleaner Production, 2013, 39: 321-328.
21 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448.
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448.
22 贾欣, 赵文星, 王建成, 等. 低温甲醇洗吸收塔产出液再生过程模拟研究[J]. 天然气化工(C1化学与化工), 2019, 44(3): 65-70.
Jia X, Zhao W X, Wang J C, et al. Regeneration process simulation of the output fluid from rectisol absorber[J]. Natural Gas Chemical Industry, 2019, 44(3): 65-70.
23 Yang Q C, Zhang J L, Chu G Y, et al. Optimal design, thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction[J]. Energy Conversion and Management, 2021, 244: 114538.
24 Yang Q C, Zhu S, Yang Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814.
25 Yi Q, Wu G S, Gong M H, et al. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas[J]. Applied Energy, 2017, 193: 149-161.
26 Zhang D Q, Duan R H, Li H W, et al. Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology[J]. Energy, 2020, 203: 117876.
27 Li M X, Zhuang Y, Zhang L, et al. Conceptual design and techno-economic analysis for a coal-to-SNG/methanol polygeneration process in series and parallel reactors with integration of waste heat recovery[J]. Energy Conversion and Management, 2020, 214: 112890.
28 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172.
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172.
29 Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910.
30 王科, 刘永艳. 2020 年中国碳市场回顾与展望[J]. 北京理工大学学报(社会科学版), 2020, 22(2): 10-19.
Wang K, Liu Y Y. China's carbon market: reviews and prospects for 2020[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2020, 22(2): 10-19.
[1] 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021.
[2] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[3] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[4] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[7] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[8] 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650.
[9] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[10] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[11] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[12] 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186.
[13] 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072.
[14] 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829.
[15] 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!