化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1714-1723.doi: 10.11949/0438-1157.20211584
孟文亮1,2(),李贵贤1,2(
),周怀荣1,2,李婧玮1,2,王健1,2,王可1,2,范学英3,王东亮1,2(
)
Wenliang MENG1,2(),Guixian LI1,2(
),Huairong ZHOU1,2,Jingwei LI1,2,Jian WANG1,2,Ke WANG1,2,Xueying FAN3,Dongliang WANG1,2(
)
摘要:
在“碳达峰、碳中和”的背景下,传统煤制甲醇工艺存在CO2排放强度大、能耗高等问题成为制约煤制甲醇工艺发展的瓶颈问题。本研究基于外源性的绿氢,重构粉煤气化煤制甲醇工艺,省掉了空分单元、变换单元,开发了短流程低温甲醇洗单元,提出了粉煤气化集成绿氢的近零碳排放煤制甲醇新工艺。从碳元素利用率、CO2排放、成本分析等角度对新工艺进行了评价。结果表明,与传统煤制甲醇工艺相比,新工艺碳元素利用率从41.50%提高到95.77%,CO2直接排放量由1.939降低至0.035 t·(t MeOH)-1,通过分析H2价格与碳税对产品成本的影响发现,当氢气价格和碳税分别为10.36 CNY·(kg H2)-1和223.3 CNY·(t CO2)-1时,两种工艺的产品成本相当。新工艺不仅减少了煤制甲醇过程碳排放,而且可以提高可再生能源就地消纳能力,具有良好的应用前景。
中图分类号:
1 | Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
2 | Chen Q Q, Lv M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620. |
3 | Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866. |
4 | 唐志永, 孙予罕, 江绵恒. 低碳复合能源系统——中国未来能源的解决方案和发展模式? [J].中国科学, 2013, 43(1): 116-124. |
Tang Z Y, Sun Y H, Jiang M H. Low-carbon hybrid energy systems: future energy solutions and development models in China?[J]. Scientia sinica Chimica 43(1): 116-124. | |
5 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
6 | Chen J J, Yang S Y, Qian Y. A novel path for carbon-rich resource utilization with lower emission and higher efficiency: an integrated process of coal gasification and coking to methanol production[J]. Energy, 2019, 177: 304-318. |
7 | Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
8 | 刘硕士, 杨思宇, 顾竞芳, 等. 气煤联供实现资源高效利用和碳减排技术进展[J]. 化工进展, 2019, 38(1): 664-671. |
Liu S S, Yang S Y, Gu J F, et al. Review on coal and gas co-feed processes for better resource use and lower carbon emission[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 664-671. | |
9 | Qin Z, Zhai G F, Wu X M, et al. Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment[J]. Energy Conversion and Management, 2016, 124: 168-179. |
10 | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8. | |
11 | Qin Z, Bhattacharya S, Tang K, et al. Effects of gasification condition on the overall performance of methanol-electricity polygeneration system[J]. Energy Conversion and Management, 2019, 184: 362-373. |
12 | 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869. |
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869. | |
13 | Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
14 | 东赫, 刘金昌, 解强, 等. 典型气流床煤气化炉气化过程的建模[J]. 化工进展, 2016, 35(8): 2426-2431. |
Dong H, Liu J C, Xie Q, et al. Modeling of coal gasification reaction in typical entrained-flow coal gasifiers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2426-2431. | |
15 | Qin S Y, Chang S Y, Yao Q. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432. |
16 | Park N, Park M J, Ha K S, et al. Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: perspective on methanol production and CO2 utilization[J]. Fuel, 2014, 129: 163-172. |
17 | Bussche K M V, Froment G F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis, 1996, 161(1): 1-10. |
18 | Cui C T, Sun J S, Li X G. A hybrid design combining double-effect thermal integration and heat pump to the methanol distillation process for improving energy efficiency[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 81-92. |
19 | Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57. |
20 | Sun L, Smith R. Rectisol wash process simulation and analysis[J]. Journal of Cleaner Production, 2013, 39: 321-328. |
21 | 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448. |
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448. | |
22 | 贾欣, 赵文星, 王建成, 等. 低温甲醇洗吸收塔产出液再生过程模拟研究[J]. 天然气化工(C1化学与化工), 2019, 44(3): 65-70. |
Jia X, Zhao W X, Wang J C, et al. Regeneration process simulation of the output fluid from rectisol absorber[J]. Natural Gas Chemical Industry, 2019, 44(3): 65-70. | |
23 | Yang Q C, Zhang J L, Chu G Y, et al. Optimal design, thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction[J]. Energy Conversion and Management, 2021, 244: 114538. |
24 | Yang Q C, Zhu S, Yang Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
25 | Yi Q, Wu G S, Gong M H, et al. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas[J]. Applied Energy, 2017, 193: 149-161. |
26 | Zhang D Q, Duan R H, Li H W, et al. Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology[J]. Energy, 2020, 203: 117876. |
27 | Li M X, Zhuang Y, Zhang L, et al. Conceptual design and techno-economic analysis for a coal-to-SNG/methanol polygeneration process in series and parallel reactors with integration of waste heat recovery[J]. Energy Conversion and Management, 2020, 214: 112890. |
28 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
29 | Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. |
30 | 王科, 刘永艳. 2020 年中国碳市场回顾与展望[J]. 北京理工大学学报(社会科学版), 2020, 22(2): 10-19. |
Wang K, Liu Y Y. China's carbon market: reviews and prospects for 2020[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2020, 22(2): 10-19. |
[1] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[2] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[3] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[4] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[5] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[6] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[7] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[8] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[9] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[10] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[11] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[12] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[13] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[14] | 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829. |
[15] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
|