化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4838-4846.doi: 10.11949/0438-1157.20210272

• 过程系统工程 • 上一篇    下一篇

TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟

刘叶刚1(),张忠林1(),侯起旺1,杨景轩1,陈东良1,2,郝晓刚1()   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.上海电气集团国控环球工程有限公司,山西 太原 030001
  • 收稿日期:2021-02-18 修回日期:2021-06-08 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 张忠林,郝晓刚 E-mail:1473690223@qq.com;zlzhang@tyut.edu.cn;xghao@tyut.edu.cn
  • 作者简介:刘叶刚(1996—),男,硕士研究生,1473690223@qq.com
  • 基金资助:
    国家自然科学基金项目(U1710101)

Process design and simulation of synthesis gas to methanol in TBCFB system

Yegang LIU1(),Zhonglin ZHANG1(),Qiwang HOU1,Jingxuan YANG1,Dongliang CHEN1,2,Xiaogang HAO1()   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanghai Electric Guokong Global Engineering Co. ,Ltd. , Taiyuan 030001, Shanxi, China
  • Received:2021-02-18 Revised:2021-06-08 Published:2021-09-05 Online:2021-09-05
  • Contact: Zhonglin ZHANG,Xiaogang HAO E-mail:1473690223@qq.com;zlzhang@tyut.edu.cn;xghao@tyut.edu.cn

摘要:

以三塔式循环流化床(TBCFB)为基础的低阶煤清洁转化多联产系统有望提升低价煤的能源和资源利用效率。利用流程模拟软件Aspen Plus 对该多联产系统甲醇合成路线进行模拟和模型验证。应用自热再生理论完成了对TBCFB甲醇生产中低温甲醇洗单元和甲醇精馏单元模拟设计,并对基于自热再生的新工艺进行换热网络(HEN)设计。从能量利用效率的角度,对新工艺进行评价。结果表明,自热再生工艺与常规工艺相比:低温甲醇洗单元冷公用工程节约了29.4%,总能耗节约了25.8%;甲醇精馏单元冷公用工程节约了69.5%,总能耗节约了32.3%。

关键词: 三塔式循环流化床, 自热再生, 煤制甲醇, 系统工程, 计算机模拟, 设计

Abstract:

The low-rank coal clean conversion polygeneration system based on the three-tower circulating fluidized bed (TBCFB) is expected to improve the energy and resource utilization efficiency of low-cost coal. The process simulation software Aspen Plus was used to simulate and verify the methanol synthesis route of the polygeneration system. To improve the energy efficiency, the self-heat recuperation theory was applied to the unit of rectisol and methanol distillation. And then, the heat exchange network (HEN) was designed based on this self-heat recuperation process. The results demonstrated that the self-heat recuperation process was beneficial to the enhancement of energy utilization. Compared to the conventional process, the self-heating regeneration process saves 29.4% in the cold utility of the low-temperature methanol washing unit and 25.8% in the total energy consumption; the cold utility in the methanol distillation unit saves 69.5% and the total energy consumption 32.3%.

Key words: TBCFB, self-heat recuperation, coal to methanol, systems engineering, computer simulation, design

中图分类号: 

  • TQ 015.2

图1

低阶煤清洁转化多联产系统集成设计"

图2

水蒸气/半焦(St/C)对合成气CO/H2的影响"

图3

TBCFB合成气制甲醇工艺流程示意图"

表1

物性方法选择"

单元物流类型物性方法
低温甲醇洗非理想、极性PSRK[12]
甲醇合成常规PENG-ROB[12]
甲醇精馏常规NRTL[30]

表2

TBCFB合成气摩尔组成"

COH2CO2CH4H2OH2S
0.27330.61830.10400.00110.00150.0018

表3

模拟结果与工业数据对比"

组分模拟结果/%工业数据/%误差/%
净化气
CO29.3429.540.68
H267.4666.810.97
CO22.993.000.03
H2S<0.1×10-6<0.1×10-6
CH40.190.03
CH3OH0.0060.01
粗甲醇
CH3OH94.11594.170.056
CH3OCH30.17080.0170.47
C2H5OH0.07480.086.5
C4H10O0.27030.270.11
H2O5.36915.311.11
精甲醇
CH3OH99.95>99.9
CH3OCH3trace
C2H5OH0.05
C4H10Otrace
H2Otrace

图4

常规过程各单元冷热复合曲线"

图5

自热再生过程的各单元冷热复合曲线"

图6

自热再生过程的换热网络设计"

图7

基于自热再生的工艺模拟流程"

表4

常规过程与自热再生过程能量结果对比"

项目常规过程/kWSHR过程/kW节约率/%
低温甲醇洗
Cooling2126150029.4
Heating146673649.8
WCOMP117
QCons1466108725.8
甲醇精馏
Cooling14745376369.5
Heating154110100
WCOMP3480
QCons154111044032.3
1 Dai S P. BP statistical review of world energy[EB/OL]. [2018-06]. .
2 Crompton P, Wu Y R. Energy consumption in China: past trends and future directions[J]. Energy Economics, 2005, 27(1): 195-208.
3 刘文革, 韩甲业, 熊志军, 等. 我国新型煤化工产业发展现状及趋势[J]. 中国煤炭, 2015, 41(3): 81-85.
Liu W G, Han J Y, Xiong Z J, et al. The current developmental situation and trends of the new coal chemical industry[J]. China Coal, 2015, 41(3): 81-85.
4 Yang C J, Jackson R B. China's growing methanol economy and its implications for energy and the environment[J]. Energy Policy, 2012, 41: 878-884.
5 Li C H, Bai H T, Lu Y Y, et al. Life-cycle assessment for coal-based methanol production in China[J]. Journal of Cleaner Production, 2018, 188: 1004-1017.
6 Liu Y G, Li G X, Chen Z R, et al. Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment[J]. Energy, 2020, 204: 117961.
7 Helgason R, Cook D, Davíðsdóttir B. An evaluation of the cost-competitiveness of maritime fuels—a comparison of heavy fuel oil and methanol (renewable and natural gas) in Iceland[J]. Sustainable Production and Consumption, 2020, 23: 236-248.
8 Qin Z, Tang Y T, Zhang Z X, et al. Techno-economic-environmental analysis of coal-based methanol and power poly-generation system integrated with biomass co-gasification and solar based hydrogen addition[J]. Energy Conversion and Management, 2021, 228: 113646.
9 Xu X Y, Liu Y, Zhang F, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68.
10 Khalafalla S S, Zahid U, Abdul Jameel A G, et al. Conceptual design development of coal-to-methanol process with carbon capture and utilization[J]. Energies, 2020, 13(23): 6421.
11 叶鑫, 丁干红. 夹点技术在煤气化制甲醇工艺中的应用[J]. 煤化工, 2010, 38(3): 1-6.
Ye X, Ding G H. Application of pinch technology in the coal-to-methanol process[J]. Coal Chemical Industry, 2010, 38(3): 1-6.
12 刘霞. 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州: 华南理工大学, 2016.
Liu X. The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou: South China University of Technology, 2016.
13 Tsutsumi A, Guan G Q, Fushimi C, et al. Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and a bubbling fluidized bed[C]//Fluidization &#x1000fc;: New Paradigm in Fluidization Engineering. Korea, 2010: 407-414.
14 岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1): 88-94.
Cen J M, Fang M X, Wang Q H, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 88-94.
15 王亚雄, 杨景轩, 张忠林, 等. 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604.
Wang Y X, Yang J X, Zhang Z L, et al. TBCFB system simulation and optimization for pyrolysis-gasification-combustion of low rank coal [J]. CIESC Journal, 2018, 69(8): 3596-3604.
16 Guan G Q, Fushimi C, Tsutsumi A, et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—advantages and challenges[J]. Particuology, 2010, 8(6): 602-606.
17 Fushimi C, Ishizuka M, Guan G Q, et al. Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux[J]. Advanced Powder Technology, 2014, 25(1): 379-388.
18 Cheng Y P, Guan G Q, Ishizuka M, et al. Numerical simulations and experiments on heat transfer around a probe in the downer reactor for coal gasification[J]. Powder Technology, 2013, 235: 359-367.
19 王俊丽. 低阶煤热解动力学特性及与生物质共热解、热解产物深加工试验研究[D]. 太原: 太原理工大学, 2017.
Wang J L. Kinetics of low rank coal pyrolysis and co-pyrolysis with biomass and deep processing of pyrolysis-derived products[D]. Taiyuan: Taiyuan University of Technology, 2017.
20 冯垣公. 半焦在可视化流化床的中低温水蒸气气化实验研究[D]. 太原: 太原理工大学, 2019.
Feng Y G. Experimental Study on medium and low temperature steam gasification of semi-coke in visual fluidized bed[D]. Taiyuan: Taiyuan University of Technology, 2019.
21 Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763.
22 Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686.
23 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation [J]. CIESC Journal, 2019, 70(8): 2938-2945.
24 韩燕. 某厂煤制甲醇工艺中低温甲醇洗装置的改造及优化研究[D]. 大连: 大连理工大学, 2014.
Han Y. The study on revamp and optimization of rectisol unit in a coal-to-methanol plant[D]. Dalian: Dalian University of Technology, 2014.
25 谢克昌, 房鼎业. 甲醇工艺学[M]. 北京: 化学工业出版社, 2010: 82.
Xie K C, Fang D Y. Methanol Technology[M]. Beijing: Chemical Industry Press, 2010: 82.
26 边兴海. 低压法焦炉气制甲醇的影响因素探讨[J]. 能源化工, 2016, 37(6): 39-45.
Bian X H. Discussion on the influence factors of synthesizing methanol by coke-oven in low pressure[J]. Energy Chemical Industry, 2016, 37(6): 39-45.
27 Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57.
28 Sharma I, Hoadley A F A, Mahajani S M, et al. Multi-objective optimisation of a Rectisol™ process for carbon capture[J]. Journal of Cleaner Production, 2016, 119: 196-206.
29 蒋朝俊. C307型催化剂在年产20万吨甲醇装置上的应用[D]. 上海: 华东理工大学, 2011.
Jiang Z J. The application of C307 catalyst in 200kt/a methanol synthesis plant[D]. Shanghai: East China University of Science and Technology, 2011.
30 王绍云. 甲醇精馏系统的模拟与优化研究[D]. 北京: 北京化工大学, 2014.
Wang S Y. Simulation and optimization of the methanol distillation system[D]. Beijing: Beijing University of Chemical Technology, 2014.
31 Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193.
32 Xia H, Ye Q, Feng S Y, et al. A novel energy-saving pressure swing distillation process based on self-heat recuperation technology[J]. Energy, 2017, 141: 770-781.
33 Douglas A P, Hoadley A F A. A process integration approach to the design of the two- and three-column methanol distillation schemes[J]. Applied Thermal Engineering, 2006, 26(4): 338-349.
34 Xia H, Ye Q, Feng S Y, et al. Energy-efficient design of downstream separation to produce n-butanol by several heat-integrated technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13205-13216.
35 Li J, Zhang F J, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191.
[1] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[2] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[3] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[4] 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059.
[5] 刘薇薇, 崔国民, 张璐, 肖媛, 杨其国, 张冠华. 一种应用于换热网络综合的阻尼优化方法[J]. 化工学报, 2022, 73(5): 2060-2072.
[6] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[7] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[8] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[9] 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657.
[10] 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
[11] 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
[12] 陈耀明,许锋,罗雄麟. 基于相对增益和优先级的化工过程协调优化裕量设计[J]. 化工学报, 2022, 73(3): 1280-1290.
[13] 石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
[14] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
[15] 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!