化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4838-4846.DOI: 10.11949/0438-1157.20210272
刘叶刚1(),张忠林1(),侯起旺1,杨景轩1,陈东良1,2,郝晓刚1()
收稿日期:
2021-02-18
修回日期:
2021-06-08
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
张忠林,郝晓刚
作者简介:
刘叶刚(1996—),男,硕士研究生,基金资助:
Yegang LIU1(),Zhonglin ZHANG1(),Qiwang HOU1,Jingxuan YANG1,Dongliang CHEN1,2,Xiaogang HAO1()
Received:
2021-02-18
Revised:
2021-06-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhonglin ZHANG,Xiaogang HAO
摘要:
以三塔式循环流化床(TBCFB)为基础的低阶煤清洁转化多联产系统有望提升低价煤的能源和资源利用效率。利用流程模拟软件Aspen Plus 对该多联产系统甲醇合成路线进行模拟和模型验证。应用自热再生理论完成了对TBCFB甲醇生产中低温甲醇洗单元和甲醇精馏单元模拟设计,并对基于自热再生的新工艺进行换热网络(HEN)设计。从能量利用效率的角度,对新工艺进行评价。结果表明,自热再生工艺与常规工艺相比:低温甲醇洗单元冷公用工程节约了29.4%,总能耗节约了25.8%;甲醇精馏单元冷公用工程节约了69.5%,总能耗节约了32.3%。
中图分类号:
刘叶刚, 张忠林, 侯起旺, 杨景轩, 陈东良, 郝晓刚. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846.
Yegang LIU, Zhonglin ZHANG, Qiwang HOU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO. Process design and simulation of synthesis gas to methanol in TBCFB system[J]. CIESC Journal, 2021, 72(9): 4838-4846.
单元 | 物流类型 | 物性方法 |
---|---|---|
低温甲醇洗 | 非理想、极性 | PSRK[ |
甲醇合成 | 常规 | PENG-ROB[ |
甲醇精馏 | 常规 | NRTL[ |
表1 物性方法选择
Table 1 Selection of property methods
单元 | 物流类型 | 物性方法 |
---|---|---|
低温甲醇洗 | 非理想、极性 | PSRK[ |
甲醇合成 | 常规 | PENG-ROB[ |
甲醇精馏 | 常规 | NRTL[ |
CO | H2 | CO2 | CH4 | H2O | H2S |
---|---|---|---|---|---|
0.2733 | 0.6183 | 0.1040 | 0.0011 | 0.0015 | 0.0018 |
表2 TBCFB合成气摩尔组成
Table 2 Mole fraction of syngas in TBCFB system
CO | H2 | CO2 | CH4 | H2O | H2S |
---|---|---|---|---|---|
0.2733 | 0.6183 | 0.1040 | 0.0011 | 0.0015 | 0.0018 |
组分 | 模拟结果/% | 工业数据/% | 误差/% |
---|---|---|---|
净化气 | |||
CO | 29.34 | 29.54 | 0.68 |
H2 | 67.46 | 66.81 | 0.97 |
CO2 | 2.99 | 3.00 | 0.03 |
H2S | <0.1×10-6 | <0.1×10-6 | — |
CH4 | 0.19 | 0.03 | — |
CH3OH | 0.006 | 0.01 | — |
粗甲醇 | |||
CH3OH | 94.115 | 94.17 | 0.056 |
CH3OCH3 | 0.1708 | 0.017 | 0.47 |
C2H5OH | 0.0748 | 0.08 | 6.5 |
C4H10O | 0.2703 | 0.27 | 0.11 |
H2O | 5.3691 | 5.31 | 1.11 |
精甲醇 | |||
CH3OH | 99.95 | >99.9 | |
CH3OCH3 | trace | — | |
C2H5OH | 0.05 | — | |
C4H10O | trace | — | |
H2O | trace | — |
表3 模拟结果与工业数据对比
Table 3 Simulation results compared to industrial data
组分 | 模拟结果/% | 工业数据/% | 误差/% |
---|---|---|---|
净化气 | |||
CO | 29.34 | 29.54 | 0.68 |
H2 | 67.46 | 66.81 | 0.97 |
CO2 | 2.99 | 3.00 | 0.03 |
H2S | <0.1×10-6 | <0.1×10-6 | — |
CH4 | 0.19 | 0.03 | — |
CH3OH | 0.006 | 0.01 | — |
粗甲醇 | |||
CH3OH | 94.115 | 94.17 | 0.056 |
CH3OCH3 | 0.1708 | 0.017 | 0.47 |
C2H5OH | 0.0748 | 0.08 | 6.5 |
C4H10O | 0.2703 | 0.27 | 0.11 |
H2O | 5.3691 | 5.31 | 1.11 |
精甲醇 | |||
CH3OH | 99.95 | >99.9 | |
CH3OCH3 | trace | — | |
C2H5OH | 0.05 | — | |
C4H10O | trace | — | |
H2O | trace | — |
项目 | 常规过程/kW | SHR过程/kW | 节约率/% |
---|---|---|---|
低温甲醇洗 | |||
Cooling | 2126 | 1500 | 29.4 |
Heating | 1466 | 736 | 49.8 |
WCOMP | — | 117 | — |
QCons | 1466 | 1087 | 25.8 |
甲醇精馏 | |||
Cooling | 14745 | 3763 | 69.5 |
Heating | 15411 | 0 | 100 |
WCOMP | — | 3480 | — |
QCons | 15411 | 10440 | 32.3 |
表4 常规过程与自热再生过程能量结果对比
Table 4 Comparison of results of the conventional process and SHR process
项目 | 常规过程/kW | SHR过程/kW | 节约率/% |
---|---|---|---|
低温甲醇洗 | |||
Cooling | 2126 | 1500 | 29.4 |
Heating | 1466 | 736 | 49.8 |
WCOMP | — | 117 | — |
QCons | 1466 | 1087 | 25.8 |
甲醇精馏 | |||
Cooling | 14745 | 3763 | 69.5 |
Heating | 15411 | 0 | 100 |
WCOMP | — | 3480 | — |
QCons | 15411 | 10440 | 32.3 |
1 | Dai S P. BP statistical review of world energy[EB/OL]. [2018-06]. . |
2 | Crompton P, Wu Y R. Energy consumption in China: past trends and future directions[J]. Energy Economics, 2005, 27(1): 195-208. |
3 | 刘文革, 韩甲业, 熊志军, 等. 我国新型煤化工产业发展现状及趋势[J]. 中国煤炭, 2015, 41(3): 81-85. |
Liu W G, Han J Y, Xiong Z J, et al. The current developmental situation and trends of the new coal chemical industry[J]. China Coal, 2015, 41(3): 81-85. | |
4 | Yang C J, Jackson R B. China's growing methanol economy and its implications for energy and the environment[J]. Energy Policy, 2012, 41: 878-884. |
5 | Li C H, Bai H T, Lu Y Y, et al. Life-cycle assessment for coal-based methanol production in China[J]. Journal of Cleaner Production, 2018, 188: 1004-1017. |
6 | Liu Y G, Li G X, Chen Z R, et al. Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment[J]. Energy, 2020, 204: 117961. |
7 | Helgason R, Cook D, Davíðsdóttir B. An evaluation of the cost-competitiveness of maritime fuels—a comparison of heavy fuel oil and methanol (renewable and natural gas) in Iceland[J]. Sustainable Production and Consumption, 2020, 23: 236-248. |
8 | Qin Z, Tang Y T, Zhang Z X, et al. Techno-economic-environmental analysis of coal-based methanol and power poly-generation system integrated with biomass co-gasification and solar based hydrogen addition[J]. Energy Conversion and Management, 2021, 228: 113646. |
9 | Xu X Y, Liu Y, Zhang F, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68. |
10 | Khalafalla S S, Zahid U, Abdul Jameel A G, et al. Conceptual design development of coal-to-methanol process with carbon capture and utilization[J]. Energies, 2020, 13(23): 6421. |
11 | 叶鑫, 丁干红. 夹点技术在煤气化制甲醇工艺中的应用[J]. 煤化工, 2010, 38(3): 1-6. |
Ye X, Ding G H. Application of pinch technology in the coal-to-methanol process[J]. Coal Chemical Industry, 2010, 38(3): 1-6. | |
12 | 刘霞. 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州: 华南理工大学, 2016. |
Liu X. The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou: South China University of Technology, 2016. | |
13 | Tsutsumi A, Guan G Q, Fushimi C, et al. Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and a bubbling fluidized bed[C]//Fluidization 􀃼: New Paradigm in Fluidization Engineering. Korea, 2010: 407-414. |
14 | 岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2011, 30(1): 88-94. |
Cen J M, Fang M X, Wang Q H, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 88-94. | |
15 | 王亚雄, 杨景轩, 张忠林, 等. 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604. |
Wang Y X, Yang J X, Zhang Z L, et al. TBCFB system simulation and optimization for pyrolysis-gasification-combustion of low rank coal [J]. CIESC Journal, 2018, 69(8): 3596-3604. | |
16 | Guan G Q, Fushimi C, Tsutsumi A, et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—advantages and challenges[J]. Particuology, 2010, 8(6): 602-606. |
17 | Fushimi C, Ishizuka M, Guan G Q, et al. Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux[J]. Advanced Powder Technology, 2014, 25(1): 379-388. |
18 | Cheng Y P, Guan G Q, Ishizuka M, et al. Numerical simulations and experiments on heat transfer around a probe in the downer reactor for coal gasification[J]. Powder Technology, 2013, 235: 359-367. |
19 | 王俊丽. 低阶煤热解动力学特性及与生物质共热解、热解产物深加工试验研究[D]. 太原: 太原理工大学, 2017. |
Wang J L. Kinetics of low rank coal pyrolysis and co-pyrolysis with biomass and deep processing of pyrolysis-derived products[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
20 | 冯垣公. 半焦在可视化流化床的中低温水蒸气气化实验研究[D]. 太原: 太原理工大学, 2019. |
Feng Y G. Experimental Study on medium and low temperature steam gasification of semi-coke in visual fluidized bed[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
21 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
22 | Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
23 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation [J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
24 | 韩燕. 某厂煤制甲醇工艺中低温甲醇洗装置的改造及优化研究[D]. 大连: 大连理工大学, 2014. |
Han Y. The study on revamp and optimization of rectisol unit in a coal-to-methanol plant[D]. Dalian: Dalian University of Technology, 2014. | |
25 | 谢克昌, 房鼎业. 甲醇工艺学[M]. 北京: 化学工业出版社, 2010: 82. |
Xie K C, Fang D Y. Methanol Technology[M]. Beijing: Chemical Industry Press, 2010: 82. | |
26 | 边兴海. 低压法焦炉气制甲醇的影响因素探讨[J]. 能源化工, 2016, 37(6): 39-45. |
Bian X H. Discussion on the influence factors of synthesizing methanol by coke-oven in low pressure[J]. Energy Chemical Industry, 2016, 37(6): 39-45. | |
27 | Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57. |
28 | Sharma I, Hoadley A F A, Mahajani S M, et al. Multi-objective optimisation of a Rectisol™ process for carbon capture[J]. Journal of Cleaner Production, 2016, 119: 196-206. |
29 | 蒋朝俊. C307型催化剂在年产20万吨甲醇装置上的应用[D]. 上海: 华东理工大学, 2011. |
Jiang Z J. The application of C307 catalyst in 200kt/a methanol synthesis plant[D]. Shanghai: East China University of Science and Technology, 2011. | |
30 | 王绍云. 甲醇精馏系统的模拟与优化研究[D]. 北京: 北京化工大学, 2014. |
Wang S Y. Simulation and optimization of the methanol distillation system[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
31 | Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193. |
32 | Xia H, Ye Q, Feng S Y, et al. A novel energy-saving pressure swing distillation process based on self-heat recuperation technology[J]. Energy, 2017, 141: 770-781. |
33 | Douglas A P, Hoadley A F A. A process integration approach to the design of the two- and three-column methanol distillation schemes[J]. Applied Thermal Engineering, 2006, 26(4): 338-349. |
34 | Xia H, Ye Q, Feng S Y, et al. Energy-efficient design of downstream separation to produce n-butanol by several heat-integrated technologies[J]. Industrial & Engineering Chemistry Research, 2018, 57(39): 13205-13216. |
35 | Li J, Zhang F J, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[8] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[9] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[10] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[11] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[12] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[13] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[14] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[15] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||