化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4644-4657.DOI: 10.11949/0438-1157.20250147

• 专栏:过程模拟与仿真 • 上一篇    下一篇

跨工况下基于参数迁移的域适应宽度学习软测量建模

范龙飞1(), 史旭东1,2,3, 熊伟丽1,2()   

  1. 1.江南大学物联网工程学院,江苏 无锡 214122
    2.江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
    3.江苏新扬子造船有限公司,江苏 无锡 214400
  • 收稿日期:2025-02-17 修回日期:2025-04-07 出版日期:2025-09-25 发布日期:2025-10-23
  • 通讯作者: 熊伟丽
  • 作者简介:范龙飞(2000—),男,硕士研究生,6231913011@stu.jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(61773182);江南大学双一流学科与支撑学科协同发展支持计划项目(QGJC20230203);中央高校基本科研业务费资助(JTSRP202501006);国家外国专家项目资助(H20240955)

Domain adaptive broad learning system with parameter transferring for cross-condition soft sensor modeling

Longfei FAN1(), Xudong SHI1,2,3, Weili XIONG1,2()   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    2.Key Laboratory of Advanced Process Control for Industry (Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China
    3.Jiangsu New Yangzi Shipbuilding Co. , Ltd. , Wuxi 214400, Jiangsu, China
  • Received:2025-02-17 Revised:2025-04-07 Online:2025-09-25 Published:2025-10-23
  • Contact: Weili XIONG

摘要:

工业过程工况改变时,新旧工况的数据分布不一致,导致软测量模型失配;且新工况样本稀缺,难以准确建立新的软测量模型。为此,提出了一种基于参数迁移的域适应宽度学习软测量建模方法,以提升模型的跨工况场景适配能力。在宽度学习系统框架下,设计了可学习的源域-目标域参数转换映射,最大限度地减少分布差异,对齐目标域与源域的预测输出分布,实现域间共享知识的迁移。构建了输出参数正则项、迁移参数正则项与基于最大均值差异准则的分布对齐正则项,避免跨域软测量模型的知识负迁移与过拟合。提出了模型参数的交替优化算法,实现输出参数和迁移参数的自适应学习。基于工业青霉素发酵和三相流工业过程验证所提方法的有效性与准确性,结果表明所提方法与现有迁移软测量方法相比具有更优的预测精度和泛化性能。

关键词: 软测量, 小样本, 多工况, 迁移学习, 宽度学习系统

Abstract:

When industrial process operating conditions change, the data distribution of the new and old conditions is inconsistent, resulting in mismatch of the soft sensor model. Moreover, sample-scarcity of the current operating condition makes it difficult to accurately establish new soft sensor models. To address this issue, this paper proposes a domain adaptive broad learning system basal soft sensor modeling method based on parameter transferring to enhance model adaptability across different operating conditions. Under the framework of broad learning system, a learnable source-domain to target-domain parameter transformation mapping is designed to minimize distribution discrepancies and align the predictive output distributions of the target and source domains, facilitating the transfer of shared knowledge between domains. Regularization terms for output parameters, transfer parameters, and a maximum mean discrepancy-based distribution alignment regularization term are constructed to avoid negative knowledge transfer and overfitting in cross-domain soft sensor models. An alternating optimization algorithm for model parameters are proposed to achieve adaptive learning of output and transfer parameters. The effectiveness and accuracy of the proposed method are validated based on industrial penicillin fermentation and three-phase flow industrial processes. The results indicate that the proposed method demonstrates superior predictive accuracy and generalization performance compared to existing transfer soft sensor methods.

Key words: soft sensor, scarce sample, multiple operating condition, transfer learning, broad learning system

中图分类号: