化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3944-3953.DOI: 10.11949/0438-1157.20250166
收稿日期:2025-02-24
修回日期:2025-03-31
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
王军
作者简介:常心泉(2000—),女,硕士研究生,xinquan@emails.bjut.edu.cn
Xinquan CHANG(
), Kexue ZHANG, Jun WANG(
), Guodong XIA
Received:2025-02-24
Revised:2025-03-31
Online:2025-08-25
Published:2025-09-17
Contact:
Jun WANG
摘要:
在气固两相流动中,悬浮在气体中的实际颗粒大多为非球形颗粒。基于气体动理论的方法,建立了一种较为简便的计算模型,推导得到了颗粒在自由分子区内所受热泳力的通用表达式,并进一步得到了球体、圆柱体颗粒所受热泳力的具体表达式。考虑到颗粒在自由分子区内的高速布朗旋转,在宏观时间尺度上可以认为颗粒在各个方向上为等概率分布,由此推导得到了任意形状颗粒所受均向热泳力的表达式,结果表明非球形颗粒的均向热泳力正比于颗粒表面积,且比例系数与颗粒形状无关。此结果得到了直接Monte Carlo模拟的验证,为简化颗粒输运特性研究及其应用提供了新思路。
中图分类号:
常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953.
Xinquan CHANG, Kexue ZHANG, Jun WANG, Guodong XIA. Thermophoretic forces on irregular particles in the free molecular regime[J]. CIESC Journal, 2025, 76(8): 3944-3953.
| [1] | Zheng F. Thermophoresis of spherical and non-spherical particles: a review of theories and experiments[J]. Advances in Colloid and Interface Science, 2002, 97(1/2/3): 255-278. |
| [2] | Jiang Q B, Rogez B, Claude J B, et al. Quantifying the role of the surfactant and the thermophoretic force in plasmonic nano-optical trapping[J]. Nano Letters, 2020, 20(12): 8811-8817. |
| [3] | Krasnikov D V, Marunchenko A A, Koroleva E A, et al. One-step dry deposition technique for aligning single-walled carbon nanotubes[J]. Chemical Engineering Journal, 2024, 498: 155508. |
| [4] | 时国华, 何林珅, 赵玺灵, 等. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
| Shi G H, He L S, Zhao X L, et al. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery[J]. CIESC Journal, 2023, 74(4): 1735-1745. | |
| [5] | Errarte A, Martin-Mayor A, Aginagalde M, et al. Thermophoresis as a technique for separation of nanoparticle species in microfluidic devices[J]. International Journal of Thermal Sciences, 2020, 156: 106435. |
| [6] | Li Y K, Deng J Q, Han Z W, et al. Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated DNA computation[J]. Journal of the American Chemical Society, 2021, 143(3): 1290-1295. |
| [7] | 杨海涛, 郑志坚, 朱家骅, 等. 气液交叉流阵列PM2.5热泳和扩散泳拟传质模型[J]. 化工学报, 2019, 70(6): 2139-2146. |
| Yang H T, Zheng Z J, Zhu J H, et al. Pseudo mass transfer model of PM2.5 thermophoresis and diffusiophoresis in gas-liquid cross flow array[J]. CIESC Journal, 2019, 70(6): 2139-2146. | |
| [8] | 卢慧, 于莹, 凌建亚, 等. 微量热泳动技术在药物靶点发现中的应用进展[J]. 中国药学杂志, 2024, 59(22): 2099-2106. |
| Lu H, Yu Y, Ling J Y, et al. Advances in the application of microscale thermophoresis in drug target discovery[J]. Chinese Pharmaceutical Journal, 2024, 59(22): 2099-2106. | |
| [9] | Mustonen K, Laiho P, Kaskela A, et al. Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors[J]. Applied Physics Letters, 2015, 107(14): 143113. |
| [10] | 雷舒婷, 张易阳, 李水清. 旋流雾化火焰合成稀土掺杂氧化钇的结构形貌和光电性能调控研究[J]. 工程热物理学报, 2024, 45(2): 569-575. |
| Lei S T, Zhang Y Y, Li S Q. Investigation of structural morphology, optical and electrical property optimization of rare earth doped yttrium oxide prepared through swirling spray flame synthesis[J]. Journal of Engineering Thermophysics, 2024, 45(2): 569-575. | |
| [11] | Burelbach J, Zupkauskas M, Lamboll R, et al. Colloidal motion under the action of a thermophoretic force[J]. The Journal of Chemical Physics, 2017, 147(9): 094906. |
| [12] | Martin K. The Kinetic Theory of Gases: Some Modern Aspects[M]. 3rd ed. London: Methuen&Co., 1950. |
| [13] | Brock J R. On the theory of thermal forces acting on aerosol particles[J]. Journal of Colloid Science, 1962, 17(8): 768-780. |
| [14] | Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1970. |
| [15] | 刘旺旺, 张克学, 王军, 等. 过渡区内纳米颗粒的曳力特性模拟研究[J]. 物理学报, 2024, 73(7): 209-216. |
| Liu W W, Zhang K X, Wang J, et al. Simulation study of drag force characteristics of nanoparticles in transition regime[J]. Acta Physica Sinica, 2024, 73(7): 209-216. | |
| [16] | Li L, Loyalka S K, Tamadate T, et al. Measurements of the thermophoretic force on submicrometer particles in gas mixtures[J]. Journal of Aerosol Science, 2024, 178: 106337. |
| [17] | Waldmann L, Schmitt K H. Thermophoresis and Diffusiophoresis of Aerosols[M]. New York: Aerosol Science: Academic Press, 1966. |
| [18] | Schadt C F, Cadle R D. Thermal forces on aerosol PARTICLES1 [J]. The Journal of Physical Chemistry, 1961, 65(10): 1689-1694. |
| [19] | Beresnev S, Chernyak V. Thermophoresis of a spherical particle in a rarefied gas: numerical analysis based on the model kinetic equations[J]. Physics of Fluids, 1995, 7(7): 1743-1756. |
| [20] | Wang J, Li Z G. Negative thermophoresis of nanoparticles in the free molecular regime[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1 Pt 1): 011201. |
| [21] | Li Z G, Wang H. Thermophoretic force and velocity of nanoparticles in the free molecule regime[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2 Pt 1): 021205. |
| [22] | 崔杰, 苏俊杰, 王军, 等. 自由分子区内纳米颗粒的热泳力计算[J]. 物理学报, 2021, 70(5): 242-250. |
| Cui J, Su J J, Wang J, et al. Thermophoretic force on nanoparticles in free molecule regime[J]. Acta Physica Sinica, 2021, 70(5): 242-250. | |
| [23] | Salmanzadeh M, Zahedi G, Ahmadi G, et al. Computational modeling of effects of thermal plume adjacent to the body on the indoor airflow and particle transport[J]. Journal of Aerosol Science, 2012, 53: 29-39. |
| [24] | Garcia-Ybarra P, Rosner D E. Thermophoretic properties of nonspherical particles and large molecules[J]. AIChE Journal, 1989, 35(1): 139-147. |
| [25] | Yu S, Wang J, Xia G D, et al. Thermophoretic force on nonspherical particles in the free-molecule regime[J]. Physical Review. E, 2018, 97(5): 053106. |
| [26] | Li M D, Mulholland G W, Zachariah M R. The effect of orientation on the mobility and dynamic shape factor of charged axially symmetric particles in an electric field[J]. Aerosol Science and Technology, 2012, 46(9): 1035-1044. |
| [27] | Li M D, You R, Mulholland G W, et al. Development of a pulsed-field differential mobility analyzer: a method for measuring shape parameters for nonspherical particles[J]. Aerosol Science and Technology, 2014, 48(1): 22-30. |
| [28] | Li M D, Mulholland G W, Zachariah M R. Understanding the mobility of nonspherical particles in the free molecular regime[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(2): 022112. |
| [29] | Liu C R, Li Z G, Wang H. Drag force and transport property of a small cylinder in free molecule flow: a gas-kinetic theory analysis[J]. Physical Review E, 2016, 94(2): 023102. |
| [30] | Clerk Maxwell J. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London Series I, 1879, 170: 231-256. |
| [31] | Liu N, Bogy D B. Forces on a rotating particle in a shear flow of a highly rarefied gas[J]. Physics of Fluids, 2008, 20(10): 107102. |
| [32] | Liu N, Bogy D B. Forces on a spherical particle with an arbitrary axis of rotation in a weak shear flow of a highly rarefied gas[J]. Physics of Fluids, 2009, 21(4): 047102. |
| [33] | 常心泉, 张克学, 王军, 等. 自由分子区内的非球形颗粒曳力计算[J]. 力学学报, 2024, 56(5): 1251-1260. |
| Chang X Q, Zhang K X, Wang J, et al. Drag forces on non-spherical particles in the free molecular regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1251-1260. | |
| [34] | Bird G A. Recent advances and current challenges for DSMC[J]. Computers & Mathematics with Applications, 1998, 35(1/2): 1-14. |
| [1] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [2] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [3] | 胡晓红, 徐璇, 陈厚涛, 凡凤仙, 苏明旭. 烟气中细颗粒声凝并的随机模拟[J]. 化工学报, 2025, 76(8): 3964-3975. |
| [4] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [5] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [6] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [7] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [8] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [9] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [10] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [11] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [12] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| [13] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| [14] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
| [15] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号