化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2897-2908.DOI: 10.11949/0438-1157.20240208
收稿日期:
2024-02-27
修回日期:
2024-05-11
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
杨帆
作者简介:
金虎(1998—),男,硕士研究生,a15950336719@163.com
基金资助:
Hu JIN1(), Fan YANG1,2(), Mengyao DAI1
Received:
2024-02-27
Revised:
2024-05-11
Online:
2024-08-25
Published:
2024-08-21
Contact:
Fan YANG
摘要:
采用真实流体状态方程的伪势格子Boltzmann方法大密度比多相流模型,模拟了重力作用下的单液滴在圆柱壁面上的运动过程。计算结果表明,随着圆柱壁面疏水性沿重力方向逐渐增强,液滴运动过程可分为铺展和滑落两个阶段。壁面浸润性分布及其变化率均会影响液滴运动过程,当液滴运动至圆柱下半部分时,其平均速度、最大速度、附着长度和液滴高度等参数随时间变化开始发生分化。此外,当液滴开始及完全运动至圆柱下半部分时,其所受附着力的水平及垂直分量分别达到最大。这些发现为深入理解液滴在圆柱壁面上的运动特性提供了重要的理论支持。
中图分类号:
金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908.
Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method[J]. CIESC Journal, 2024, 75(8): 2897-2908.
图9 不同时刻液滴内最大、最小速度绝对值位置及液滴高度最大位置示意图
Fig.9 The location of maximum and minimum of velocity magnitude as well as location of maximum height of droplet at different moments
图11 液滴内速度绝对值最大位置、液滴内速度绝对值最小位置和液滴高度最大位置随时间的变化
Fig11 Evolution of locations of maximum and minimum of velocity magnitude as well as maximum height of droplet with time
1 | Zhang Y F, Yang J, Sun C C, et al. Diving beetle-inspired durable omniphobic slippery coatings with pit-type non-smooth topography[J]. Progress in Organic Coatings, 2023, 185: 107898. |
2 | Ko K J, Yoon D Y, Yang S C, et al. Brush-painted superhydrophobic silica coating layers for self-cleaning solar panels[J]. Journal of Industrial and Engineering Chemistry, 2022, 106: 460-468. |
3 | Maroofi A, Safa N N, Ghomi H. Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications[J]. International Journal of Adhesion and Adhesives, 2020, 98: 102554. |
4 | Chen W W, Dong L X, Tan Q M, et al. An adjuvant that increases the adhesion of pesticides on plant surfaces and improves the efficiency of pest control: polyethylene glycol sol-gel polymer[J]. Reactive and Functional Polymers, 2023, 192: 105722. |
5 | 王淑香, 徐立, 童军杰, 等. 疏水性润湿梯度表面液滴脱离过程的实验研究[J]. 工程热物理学报, 2021, 42: 1815-1820. |
Wang S X, Xu L, Tong J J, et al. Experimental study of droplet detachment processes on hydrophobic wetting gradient surfaces[J]. Journal of Engineering Thermophysics, 2021, 42: 1815-1820. | |
6 | Chao L, Zheng J J, Liu X F, et al. Facile laser-based process of superwetting zirconia ceramic with adjustable adhesion for self-cleaning and lossless droplet transfer[J]. Applied Surface Science, 2023, 638: 158069. |
7 | Wang C, Ma Y L, Ye T X, et al. Enhancement of the attachment performance with oil droplet by coating of condensate film on the surface of air bubble[J]. Chemical Engineering Science, 2024, 285: 119630. |
8 | Lu H Q, Lin J, Lin J, et al. Active bacterial anti-adhesion strategy based on directional transportation of droplet self-actuated by Laplace pressure gradient on self-actuated and infrared sensing responsive platform[J]. Chemical Engineering Journal, 2023, 475: 146348. |
9 | Gai S L, Peng Z B, Moghtaderi B, et al. LBM study of ice nucleation induced by the collapse of cavitation bubbles[J]. Computers and Fluids, 2022, 246: 105616. |
10 | Wei Y K, Yang H, Dou H S, et al. A novel two-dimensional coupled lattice Boltzmann model for thermal incompressible flows[J]. Applied Mathematics and Computation, 2018, 339: 556-567. |
11 | Yang F, Yang H C, Yan Y H, et al. Simulation of natural convection in an inclined polar cavity using a finite difference lattice Boltzmann method[J]. Journal of Mechanical Science and Technology, 2017, 31: 3053-3065. |
12 | Wei Y K, Dou H S, Qian Y H, et al. A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh-Taylor instability[J]. Computers and Fluids, 2017, 156: 97-102. |
13 | Wang N N, Liu H H, Zhang C H. Deformation and breakup of a confined droplet in shear flows with power-law rheology[J]. Journal of Rheology, 2017, 61: 741-758. |
14 | Huang H B, Yang X, Lu X Y. Sedimentation of an ellipsoidal particle in narrow tubes[J]. Physics of Fluids, 2014, 26: 053302. |
15 | Xia Y X, Qiu X, Qian Y H. Numerical simulation of two-dimensional turbulence based on immersed boundary lattice Boltzmann method[J]. Computers and Fluids, 2019, 195: 104321. |
16 | Xia Y X, Qian Y H. Lattice Boltzmann simulation for forced two-dimensional turbulence[J]. Physical Review E, 2014, 90: 023004. |
17 | Chai Z H, Guo X Y, Wang L, et al. Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures[J]. Physical Review E, 2019, 99: 023312. |
18 | Chai Z H, Sun D K, Wang H L, et al. A comparative study of local and nonlocal Allen-Cahn equations with mass conservation[J]. International Journal of Heat and Mass Transfer, 2018, 122: 631-642. |
19 | Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. |
20 | Chen W Y, Yang F, Yan Y Y, et al. Lattice Boltzmann simulation of the spreading behavior of a droplet impacting on inclined solid wall[J]. Journal of Mechanical Science and Technology, 2018, 32: 2637-2649. |
21 | Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43: 4320-4327. |
22 | Yang F, Shao X S, Wang Y, et al. Resistance characteristics analysis of droplet logic gate based on lattice Boltzmann method[J]. European Journal of Mechanics/B Fluids, 2021, 86: 90-106. |
23 | He X. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of Computational Physics, 1999, 152: 642-663. |
24 | Sun M Y, Li A, Zhang X J, et al. Influence of operating conditions on the fuel electrode degradation of solid oxide electrolysis cell investigated by phase field model with wettability analysis[J]. Journal of Power Sources, 2023, 587: 233700. |
25 | Wang K, Xia Y C, Li Z Y, et al. A phase-field lattice Boltzmann method for liquid-vapor phase change problems based on conservative Allen-Cahn equation and adaptive treegrid[J]. Computers and Fluids, 2023, 264: 105973. |
26 | Swift M R, Orlandini E, Osborn W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54: 5041. |
27 | Zu Y Q, Yan Y Y, Li J Q, et al. Wetting behaviours of a single droplet on biomimetic micro structured surfaces[J]. Journal of Bionic Engineering, 2010, 7: 191-198. |
28 | Chen L, Gao M, Liang J, et al. Boltzmann simulation of wetting gradient accelerating droplets merging and shedding on a circumferential surface[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16: 1796-1812. |
29 | Gong S, Cheng P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216. |
30 | Li Q, Luo K H, Li X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87: 053301. |
31 | Yao J, Wang J F, Dong Q M, et al. Lattice Boltzmann study of droplet evaporation on a heated substrate under a uniform electric field[J]. Applied Thermal Engineering, 2022, 211: 118517. |
32 | Zhang K X, Zhao J Y, Chen S, et al. Effects of a chemically heterogeneous island on the dynamic contact angles of droplets[J]. Applied Surface Science, 2019, 486: 337-343. |
[1] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[2] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[3] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[4] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[5] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[6] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[7] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[8] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[9] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
[10] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[11] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[12] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[13] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[14] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
[15] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||