化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2958-2973.DOI: 10.11949/0438-1157.20241267
王令颁(
), 孙漪霏(
), 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进
收稿日期:2024-11-11
修回日期:2024-12-18
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
孙漪霏
作者简介:王令颁(1995—),男,博士研究生,wlb9519@qq.com
基金资助:
Lingban WANG(
), Yifei SUN(
), Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN
Received:2024-11-11
Revised:2024-12-18
Online:2025-06-25
Published:2025-07-09
Contact:
Yifei SUN
摘要:
天然气水合物资源开发利用是当今能源领域的研究前沿,目前相关科学研究和新技术开发越来越依赖大尺度模拟装置。利用大尺度扇柱形反应釜模拟了甲烷水合物降压开采过程,获取了温度场、压力场、波速演变特征,及水合物分解和气液产出规律。结果表明,降压初期压力传播缓慢,3 m径向的压差可达3~4 MPa,压力稳定后压差缩小至0.3~0.4 MPa;受压力影响,径向水合物分解速率存在显著差异。降压初期近井区域存在水合物二次生成行为,对降压速率具有负面影响。此外,还通过外连恒压补水系统探索了外围环境对降压过程的影响。结果表明,外部盐水持续渗入弥补了储层压力,对温/压变化和气/水产出具有显著影响。
中图分类号:
王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973.
Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor[J]. CIESC Journal, 2025, 76(6): 2958-2973.
图2 大尺度分维度水合物储层模型及对应的水合物开采模拟器示意图
Fig.2 Schematic diagram of a large-scale multi-dimensional hydrate reservoir model and the corresponding hydrate exploitation simulator
| 组别 | 体系类别 | 进水口 | 平均补水 速率/(L/h) | 气动调节阀开度/% |
|---|---|---|---|---|
| 1 | 封闭 | — | — | 15 |
| 2 | 封闭 | — | — | 30 |
| 3 | 封闭 | — | — | 45 |
| 4 | 封闭 | — | — | 60 |
| 5 | 封闭 | — | — | 75 |
| 6 | 开放 | 阀门17 | 7 | 15 |
| 7 | 开放 | 阀门17 | 7 | 30 |
| 8 | 开放 | 阀门17 | 7 | 45 |
| 9 | 开放 | 阀门17 | 7 | 60 |
| 10 | 开放 | 阀门17 | 7 | 75 |
表1 冷模实验信息汇总
Table 1 Summary of information for the cold model experiments
| 组别 | 体系类别 | 进水口 | 平均补水 速率/(L/h) | 气动调节阀开度/% |
|---|---|---|---|---|
| 1 | 封闭 | — | — | 15 |
| 2 | 封闭 | — | — | 30 |
| 3 | 封闭 | — | — | 45 |
| 4 | 封闭 | — | — | 60 |
| 5 | 封闭 | — | — | 75 |
| 6 | 开放 | 阀门17 | 7 | 15 |
| 7 | 开放 | 阀门17 | 7 | 30 |
| 8 | 开放 | 阀门17 | 7 | 45 |
| 9 | 开放 | 阀门17 | 7 | 60 |
| 10 | 开放 | 阀门17 | 7 | 75 |
| 次序 | 类别 | 注入量/mol | 注入压力和温度/(MPa,℃) | 稳定压力和温度/(MPa,℃) |
|---|---|---|---|---|
| 1 | 注气 | 85.49 | (10.03,8.44) | (5.38,5.29) |
| 2 | 注气 | 79.76 | (10.13,8.49) | (5.82,5.34) |
| 3 | 注气 | 73.44 | (10.01,7.70) | (6.38,5.36) |
| 4 | 注水 | 253.39 | (7.87,6.21) | (6.62,5.34) |
| 5 | 注水 | 286.86 | (9.79,6.49) | (6.95,5.19) |
| 6 | 注水 | 123.67 | (9.60,5.64) | (8.13,5.22) |
表2 水合物生成过程信息汇总
Table 2 Summary of information for the hydrate formation process
| 次序 | 类别 | 注入量/mol | 注入压力和温度/(MPa,℃) | 稳定压力和温度/(MPa,℃) |
|---|---|---|---|---|
| 1 | 注气 | 85.49 | (10.03,8.44) | (5.38,5.29) |
| 2 | 注气 | 79.76 | (10.13,8.49) | (5.82,5.34) |
| 3 | 注气 | 73.44 | (10.01,7.70) | (6.38,5.36) |
| 4 | 注水 | 253.39 | (7.87,6.21) | (6.62,5.34) |
| 5 | 注水 | 286.86 | (9.79,6.49) | (6.95,5.19) |
| 6 | 注水 | 123.67 | (9.60,5.64) | (8.13,5.22) |
| 参数 | 数值 |
|---|---|
| 组别 | 11 |
| 体系类别 | 开放 |
| 进水口 | 阀门17 |
| 初始压力/MPa | 9.80 |
| 初始温度/℃ | 8.50 |
| 开采压力/MPa | 3.00 |
| 开采时间/min | 2700 |
| 累计产气量/mol | 232.04 |
| 累计注水量/L | 98.62 |
| 累计产水量/L | 94.15 |
表3 水合物开采实验信息汇总
Table 3 Summary of information for the hydrate production experiment
| 参数 | 数值 |
|---|---|
| 组别 | 11 |
| 体系类别 | 开放 |
| 进水口 | 阀门17 |
| 初始压力/MPa | 9.80 |
| 初始温度/℃ | 8.50 |
| 开采压力/MPa | 3.00 |
| 开采时间/min | 2700 |
| 累计产气量/mol | 232.04 |
| 累计注水量/L | 98.62 |
| 累计产水量/L | 94.15 |
| [1] | EIA. International energy outlook 2019[R]. U.S. Energy Information Administration, 2019. |
| [2] | Koh C A, Sloan E D, Sum A K, et al. Fundamentals and applications of gas hydrates[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 237-257. |
| [3] | Hassanpouryouzband A, Joonaki E, Farahani M V, et al. Gas hydrates in sustainable chemistry[J]. Chemical Society Reviews, 2020, 49(15): 5225-5309. |
| [4] | Rose K, Boswell R, Collett T. Mount elbert gas hydrate stratigraphic test well, Alaska north slope: coring operations, core sedimentology, and lithostratigraphy[J]. Marine and Petroleum Geology, 2011, 28(2): 311-331. |
| [5] | Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
| [6] | Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator[J]. Fuel, 2012, 94: 486-494. |
| [7] | Wang Y, Li X S, Xu W Y, et al. Experimental investigation into factors influencing methane hydrate formation and a novel method for hydrate formation in porous media[J]. Energy & Fuels, 2013, 27(7): 3751-3757. |
| [8] | Wang Y F, Wang L B, Li Y, et al. Effect of temperature on gas production from hydrate-bearing sediments by using a large 196-L reactor[J]. Fuel, 2020, 275: 117963. |
| [9] | Li N, Sun Z F, Sun C Y, et al. Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator[J]. Fuel, 2018, 216: 612-620. |
| [10] | Su K H, Sun C Y, Dandekar A, et al. Experimental investigation of hydrate accumulation distribution in gas seeping system using a large scale three-dimensional simulation device[J]. Chemical Engineering Science, 2012, 82: 246-259. |
| [11] | Heeschen K U, Abendroth S, Priegnitz M, et al. Gas production from methane hydrate: a laboratory simulation of the multistage depressurization test in mallik, northwest territories, Canada[J]. Energy & Fuels, 2016, 30(8): 6210-6219. |
| [12] | Schicks J M, Spangenberg E, Giese R, et al. New approaches for the production of hydrocarbons from hydrate bearing sediments[J]. Energies, 2011, 4(1): 151-172. |
| [13] | Huang L, Kang J L, Bu Q T, et al. Experimental investigation of hydrate production via deep depressurization using a large-scale laboratory reactor[J]. Energy & Fuels, 2023, 37(4): 2799-2810. |
| [14] | Liu C L, Li Y L, Liu L L, et al. An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method[J]. Natural Gas Industry B, 2020, 7(1): 56-63. |
| [15] | Konno Y, Jin Y, Shinjou K, et al. Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment[J]. RSC Advances, 2014, 4(93): 51666-51675. |
| [16] | Nagao J. Development of methane hydrate production method[J]. Synthesiology, 2012, 5(2): 89-97. |
| [17] | Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1115-1127. |
| [18] | Yin Z Y, Wan Q C, Gao Q, et al. Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments[J]. Applied Energy, 2020, 271: 115195. |
| [19] | 薛芸, 石京平, 贺承祖. 低速非达西流动机理分析[J]. 石油勘探与开发, 2001, 28(5): 102-104. |
| Xue Y, Shi J P, He C Z. Analysis of low velocity non-Darcy flow mechanism[J]. Petroleum Exploration and Development, 2001, 28(5): 102-104. | |
| [20] | 胡勇, 郭长敏, 徐轩, 等. 岩层气藏岩石孔喉结构及渗流特征[J]. 石油实验地质, 2015, 37(3): 390-393. |
| Hu Y, Guo C M, Xu X, et al. Pore throat structure and flow characteristics of sandstone reservoirs[J]. Petroleum Geology & Experiment, 2015, 37(3): 390-393. | |
| [21] | 徐轩, 胡勇, 田姗姗, 等. 低渗致密气藏气相启动压力梯度表征及测量[J]. 特种油气藏, 2015, 22(4): 78-81. |
| Xu X, Hu Y, Tian S S, et al. Characterization and measurement of starting pressure gradient of gas phase in low-permeability tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2015, 22(4): 78-81. | |
| [22] | Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215. |
| [23] | Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. |
| [24] | Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92: 65-81. |
| [25] | Wang Y, Feng J C, Li X S, et al. Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system[J]. Applied Energy, 2018, 226: 916-923. |
| [26] | Yu Y S, Zhang X W, Liu J W, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
| [27] | Khataniar S, Kamath V A, Omenihu S D, et al. Modelling and economic analysis of gas production from hydrates by depressurization method[J]. The Canadian Journal of Chemical Engineering, 2002, 80(1): 135-143. |
| [28] | Li Q P, Zhou S W, Zhao J F, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Chinese Journal of Engineering Science, 2022, 24(3): 214. |
| [29] | Chen B B, Yang M J, Sun H R, et al. Visualization study on the promotion of natural gas hydrate production by water flow erosion[J]. Fuel, 2019, 235: 63-71. |
| [30] | Sean W Y, Sato T, Yamasaki A, et al. CFD and experimental study on methane hydrate dissociation ( p a r t Ⅰ ) : Dissociation under water flow[J]. AIChE Journal, 2007, 53(1): 262-274. |
| [31] | Li S X, Wu D D, Wang X P, et al. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens[J]. Energy, 2021, 232: 120889. |
| [32] | Zhao E M, Hou J, Liu Y G, et al. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea[J]. Energy, 2020, 213: 118826. |
| [33] | Ahn T, Lee J, Lee J Y, et al. Experimental analysis on depressurization-induced gas production from 10-meter-scale hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2021, 31(3): 372-377. |
| [34] | 阮徐可, 李小森, 杨明军, 等. 天然气水合物二次生成及渗透率变化对降压开采的影响[J]. 石油学报, 2015, 36(5): 612-619. |
| Ruan X K, Li X S, Yang M J, et al. Influences of gas hydrate reformation and permeability changes on depressurization recovery[J]. Acta Petrolei Sinica, 2015, 36(5): 612-619. | |
| [35] | Li B, Sun Y H, Jiang S H, et al. Investigating the influence of Joule-Thomson cooling on hydrate reformation near the wellbore[J]. Gas Science and Engineering, 2024, 124: 205288. |
| [36] | Li X S, Zhang Y, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator[J]. Energy & Fuels, 2011, 25(10): 4497-4505. |
| [37] | Wang Z Q, Liu S Y, Li H Y, et al. A numerical simulation study of methane hydrate reformation during the dissociation process induced by depressurization[J]. Fuel, 2022, 313: 122983. |
| [38] | Konno Y, Fujii T, Sato A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan: toward future commercial production[J]. Energy & Fuels, 2017, 31(3): 2607-2616. |
| [39] | Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013. |
| [40] | Dong B C, Xiao P, Sun Y F, et al. Coupled flow and geomechanical analysis for gas production from marine heterogeneous hydrate-bearing sediments[J]. Energy, 2022, 255: 124501. |
| [41] | Zhang N T, Li S X, Chen L T, et al. Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments[J]. Energy, 2024, 290: 130215. |
| [42] | Ji Y K, Kneafsey T J, Hou J, et al. Relative permeability of gas and water flow in hydrate-bearing porous media: a micro-scale study by lattice Boltzmann simulation[J]. Fuel, 2022, 321: 124013. |
| [43] | Gao Q, Yin Z Y, Zhao J Z, et al. Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization[J]. Chemical Engineering Journal, 2021, 406: 127174. |
| [44] | Wang Y, Feng J C, Li X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90: 1931-1948. |
| [45] | Yang M J, Zhao J, Zheng J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: a review[J]. Applied Energy, 2019, 256: 113878. |
| [46] | Kuang Y M, Yang L, Li Q P, et al. Physical characteristic analysis of unconsolidated sediments containing gas hydrate recovered from the Shenhu Area of the South China sea[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106173. |
| [47] | Wang C N, Li X X, Li Q P, et al. Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment[J]. Chinese Journal of Chemical Engineering, 2024, 73: 176-188. |
| [48] | Zhang J D, Yin Z Y, Li Q P, et al. Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery[J]. Energy, 2023, 282: 128315. |
| [49] | Yin Z Y, Moridis G, Tan H K, et al. Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium[J]. Applied Energy, 2018, 220: 681-704. |
| [50] | Feng Y C, Chen L, Suzuki A, et al. Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization[J]. Energy, 2019, 166: 1106-1119. |
| [51] | Qin X W, Liang Q Y, Ye J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
| [52] | Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. |
| [53] | Zhang Q, Liu X, He T, et al. Influence of gas hydrate on the acoustic properties of sediment: a comprehensive review with a focus on experimental measurements[J]. Acta Geologica Sinica-English Edition, 2022, 96(2): 713-726. |
| [54] | Zhu Y J, Chu Y S, Huang X, et al. Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection[J]. Energy, 2023, 269: 126825. |
| [55] | Ren L L, Qi Y H, Chen J L, et al. Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution[J]. Applied Energy, 2020, 275: 115211. |
| [56] | Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): 1-38. |
| [57] | Li Y H, Liu W G, Zhu Y M, et al. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods[J]. Applied Energy, 2016, 162: 1627-1632. |
| [58] | Sun H Z, Chang Y J, Sun B J, et al. Spatial-temporal evolution of reservoir effective stress during marine hydrate depressurization production[J]. International Journal of Hydrogen Energy, 2023, 48(86): 33483-33495. |
| [59] | Dvorkin J, Helgerud M B, Waite W F, et al. Introduction to physical properties and elasticity models[M]//Coastal Systems and Continental Margins. Dordrecht: Springer Netherlands, 2003: 245-260. |
| [1] | 颜成辉, 谢应明, 庞治海, 翁盛乔. 泡沫多孔材料对R134a水合物蓄冷的强化研究[J]. 化工学报, 2025, 76(6): 3084-3092. |
| [2] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [3] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [4] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [5] | 徐宏标, 杨亮, 李子栋, 刘道平. 盐水微滴/泡沫铜复合体系中甲烷水合物生成动力学研究[J]. 化工学报, 2024, 75(9): 3287-3296. |
| [6] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| [7] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [8] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [9] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| [10] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
| [11] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
| [12] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
| [13] | 马旭, 滕亚栋, 刘杰, 王宇璐, 张鹏, 张莲海, 姚万龙, 展静, 吴青柏. 喷雾法水合物法捕集分离烟道气中CO2[J]. 化工学报, 2024, 75(5): 2001-2016. |
| [14] | 刘礼豪, 黄婷, 雍宇, 罗昕浩, 赵泽明, 宋尚飞, 史博会, 陈光进, 宫敬. 含粉砂盐水体系甲烷水合物生成与固相沉积规律[J]. 化工学报, 2024, 75(5): 1987-2000. |
| [15] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号