化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2865-2874.DOI: 10.11949/0438-1157.20240220
曹佳蕾(), 孙立岩(), 曾德望, 尹凡, 高子翔, 肖睿
收稿日期:
2024-02-29
修回日期:
2024-04-10
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
孙立岩
作者简介:
曹佳蕾(2000—),女,硕士研究生,caojialei2022@163.com
基金资助:
Jialei CAO(), Liyan SUN(), Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO
Received:
2024-02-29
Revised:
2024-04-10
Online:
2024-08-25
Published:
2024-08-21
Contact:
Liyan SUN
摘要:
化学链制氢技术具有能耗低、产氢纯度高、清洁高效等优势,在氢能领域越来越受到重视。化学链制氢系统中复杂的流动与传递过程限制了该技术的发展,需要开展深入的研究工作揭示化学链制氢反应器的运行特性。使用双流体模型对化学链制氢双流化床反应器进行三维数值模拟研究,考察不同操作工况和载氧体属性对系统运行的影响,揭示反应器内部压力和固相浓度分布规律,为双流化床化学链制氢装置的运行和优化提供指导。计算结果表明,随着床料量增加,提升管压力波动幅值减小,运行更加平稳;由于进料口布置形式的影响,在提升管入口段固相分布呈现较强的不对称性;当前工况下提升管入口气速为7 m/s时反应器运行最平稳,随着流化气速增加固体循环量出现剧烈波动。
中图分类号:
曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874.
Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors[J]. CIESC Journal, 2024, 75(8): 2865-2874.
模拟工况 | uri/(m/s) | usp/(m/s) | u1/(m/s) | u2/(m/s) | 颗粒 总质量/kg |
---|---|---|---|---|---|
1 | 7 | 0.2 | 0.4 | 0.8 | 20.8 |
2 | 7 | 0.2 | 0.4 | 0.8 | 30.9 |
3 | 5 | 0.2 | 0.4 | 0.8 | 30.9 |
4 | 9 | 0.2 | 0.4 | 0.8 | 30.9 |
5 | 7 | 4 | 0.1 | 0.2 | 30.9 |
6 | 7 | 4 | 0.1 | 0.2 | 40.9① |
表1 数值模拟工况
Table 1 Simulation conditions
模拟工况 | uri/(m/s) | usp/(m/s) | u1/(m/s) | u2/(m/s) | 颗粒 总质量/kg |
---|---|---|---|---|---|
1 | 7 | 0.2 | 0.4 | 0.8 | 20.8 |
2 | 7 | 0.2 | 0.4 | 0.8 | 30.9 |
3 | 5 | 0.2 | 0.4 | 0.8 | 30.9 |
4 | 9 | 0.2 | 0.4 | 0.8 | 30.9 |
5 | 7 | 4 | 0.1 | 0.2 | 30.9 |
6 | 7 | 4 | 0.1 | 0.2 | 40.9① |
名称 | 参数 |
---|---|
湍流模型 | standard k-ε |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | gidaspow |
固相压力 | lun-et-al |
颗粒体积黏度 | lun-et-al |
摩擦黏度 | schaeffer |
摩擦压力 | based-ktgf |
径向分布函数 | lun-et-al |
堆积极限 | 0.63 |
表2 数值模型参数设置
Table 2 Numerical model parameter settings
名称 | 参数 |
---|---|
湍流模型 | standard k-ε |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | gidaspow |
固相压力 | lun-et-al |
颗粒体积黏度 | lun-et-al |
摩擦黏度 | schaeffer |
摩擦压力 | based-ktgf |
径向分布函数 | lun-et-al |
堆积极限 | 0.63 |
1 | 高明. 化学链制氢研究进展[J]. 能源研究与利用, 2022(6): 29-33. |
Gao M. Research progress of chemical looping hydrogen production[J]. Energy Research & Utilization, 2022(6): 29-33. | |
2 | Zheng H, Sun C, Zeng L. Research progress of chemical looping technology for low-carbon hydrogen generation[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 313-329. |
3 | Tenhumberg N, Büker K. Ecological and economic evaluation of hydrogen production by different water electrolysis technologies[J]. Chemie Ingenieur Technik, 2020, 92(10): 1586-1595. |
4 | 钟鸣. 中国绿色制氢关键技术发展现状及展望[J]. 现代化工, 2023, 43(4): 13-17. |
Zhong M. Development status and prospect of key technologies of green hydrogen production in China[J]. Modern Chemical Industry, 2023, 43(4): 13-17. | |
5 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//Efficiency and Costing. Washington, D.C.: American Chemical Society, 1983: 71-85. |
6 | He F, Li H B, Zhao Z L. Advancements in development of chemical-looping combustion: a review[J]. International Journal of Chemical Engineering, 2009: 710515. |
7 | Luo M, Yi Y, Wang S, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
8 | Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93. |
9 | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
10 | de Vos Y, Jacobs M, van der Voort P, et al. Development of stable oxygen carrier materials for chemical looping processes—a review[J]. Catalysts, 2020, 10(8): 926. |
11 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
12 | 刘涛, 余钟亮, 李光, 等. 化学链制氢技术的研究进展与展望[J]. 应用化工, 2017, 46(11): 2215-2222. |
Liu T, Yu Z L, Li G, et al. Status and prospect of chemical looping process for hydrogen generation[J]. Applied Chemical Industry, 2017, 46(11): 2215-2222. | |
13 | Rydén M, Arjmand M. Continuous hydrogen production via the steam-iron reaction by chemical looping in a circulating fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2012, 37(6): 4843-4854. |
14 | Sridhar D, Tong A, Kim H, et al. Syngas chemical looping process: design and construction of a 25 kWth subpilot unit[J]. Energy & Fuels, 2012, 26(4): 2292-2302. |
15 | Hsieh T L, Xu D K, Zhang Y T, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture[J]. Applied Energy, 2018, 230: 1660-1672. |
16 | Xue Z P, Chen S Y, Wang D, et al. Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation[J]. Industrial & Engineering Chemistry Research,2012, 51(11): 4267-4278. |
17 | Chavda A, Mehta P, Harichandan A. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture[J]. Experimental and Computational Multiphase Flow, 2022, 4(4): 360-376. |
18 | Sharma R, May J, Alobaid F, et al. Euler-Euler CFD simulation of the fuel reactor of a 1 MWth chemical-looping pilot plant: influence of the drag models and specularity coefficient[J]. Fuel, 2017, 200: 435-446. |
19 | Wang S, Liu G D, Lu H L, et al. A cluster structure-dependent drag coefficient model applied to risers[J]. Powder Technology, 2012, 225: 176-189. |
20 | Wang S, Lu H L, Zhao F X, et al. CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes[J]. Chemical Engineering Journal, 2014, 236: 121-130. |
21 | Ostace A, Chen Y Y, Parker R, et al. Kinetic model development and Bayesian uncertainty quantification for the complete reduction of Fe-based oxygen carriers with CH4, CO, and H2 for chemical looping combustion[J]. Chemical Engineering Science, 2022, 252: 117512. |
22 | Gao G H, Lai Y H, Wang S. Particle-resolved simulation of Fe-based oxygen carrier in chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34624-34633. |
23 | Wang J X, Gao G H, Zhu Y C, et al. Evaluation of oxygen carrier performance in a packed-bed reactor during chemical looping hydrogen generation[J]. Chemical Engineering & Technology, 2023, 47: 504-509. |
24 | 马琎晨, 赵海波, 黄振, 等. 双循环流化床化学链燃烧反应器冷态实验研究[J]. 石油学报(石油加工), 2020, 36(6): 1189-1199. |
Ma J C, Zhao H B, Huang Z, et al. Cold-model experiment of dual circulating fluidized bed reactor for chemical looping combustion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1189-1199. | |
25 | Wang S, Lu H L, Li D, et al. Simulation of the chemical looping reforming process in the fuel reactor with a bubble-based energy minimization multiscale model[J]. Energy & Fuels, 2013, 27(8): 5008-5015. |
26 | Yurata T, Tang L G, Feng Y Q, et al. CFD simulation of a cold flow model of inter-connected three fluidized reactors applied to chemical looping hydrogen production[J]. Energy Reports, 2022, 8: 1112-1117. |
27 | Lee D, Seo M W, Nguyen T D B, et al. Solid circulation characteristics of the three-reactor chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14546-14556. |
28 | Di Renzo A, Napolitano E, Di Maio F. Coarse-grain DEM modelling in fluidized bed simulation: a review[J]. Processes, 2021, 9(2): 279. |
29 | Zhou L X. A review for developing two-fluid modeling and LES of turbulent combusting gas-particle flows[J]. Powder Technology, 2016, 297: 438-447. |
30 | Norouzi H R, Golshan S, Zarghami R. On the drag force closures for multiphase flow modeling[J]. Chemical Product and Process Modeling, 2022, 17(5): 531-582. |
31 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[C]//7th International Conference on Fluidization, 1991. |
32 | Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Journal of Fluid Mechanics, 1987, 176: 67-93. |
33 | Guan Y J, Chang J, Zhang K, et al. Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed[J]. Powder Technology, 2016, 289: 118-125. |
[1] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
[2] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
[3] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[4] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[5] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[6] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[7] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[8] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[9] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[10] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
[11] | 王芝安, 兰忠, 马学虎. 喷嘴参数对超临界水热燃烧特性影响的模拟[J]. 化工学报, 2024, 75(6): 2190-2200. |
[12] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[13] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[14] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[15] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 184
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||