| [1] |
Cao W P, Yan J T, Zhang P, et al. Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries[J]. Ionics, 2022, 28(10): 4515-4526.
|
| [2] |
Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chemical Society Reviews, 2024, 53(6): 3134-3166.
|
| [3] |
Jiang P, Van Fan Y, Klemeš J J. Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities[J]. Applied Energy, 2021, 285: 116441.
|
| [4] |
Zhang C, Chou S, Guo Z, et al. Beyond lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(5): 2308001.
|
| [5] |
Chan K H, Liu H T, Azimi G. Synthesis of a nickel-rich LiNi0.6Mn0.2Co0.2O2 cathode material utilizing the supercritical carbonation process[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4271-4280.
|
| [6] |
Soloy A, Flahaut D, Ledeuil J B, et al. Unraveling the morphological dependency of the LiNi0.6Mn0.2Co0.2O2 layered oxide reactivity in Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(7): 8669-8685.
|
| [7] |
Klein S, Bärmann P, Fromm O, et al. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells[J]. Journal of Materials Chemistry A, 2021, 9(12): 7546-7555.
|
| [8] |
Ling J, Karuppiah C, Krishnan S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy & Fuels, 2021, 35(13): 10428-10450.
|
| [9] |
Kong Y L, Yuan L X, Liao Y Q, et al. Efficient separation and selective Li recycling of spent LiFePO4 cathode[J]. Energy Materials, 2023, 3(6): 300053.
|
| [10] |
Jiang X M, Chen Y J, Meng X K, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review[J]. Carbon, 2022, 191: 448-470.
|
| [11] |
Román-Ramírez L A, Marco J. Design of experiments applied to lithium-ion batteries: a literature review[J]. Applied Energy, 2022, 320: 119305.
|
| [12] |
Sheng L, Yang K, Chen J, et al. A protophilic MOF enables Ni-rich lithium-battery stable cycling in a high water/acid content[J]. Advanced Materials, 2023, 35(25): 2212292.
|
| [13] |
Yu Z Z, Zhao G Q, Ji F L, et al. Collaboratively enhancing electrochemical properties of LiNi0.83Co0.11Mn0.06O2 through doping and coating of quadrivalent elements[J]. Rare Metals, 2023, 42(12): 4103-4114.
|
| [14] |
Miyaoka Y, Sato T, Oguro Y, et al. A practical and sustainable Ni/Co-free high-energy electrode material: nanostructured LiMnO2 [J]. ACS Central Science, 2024, 10(9): 1718-1732.
|
| [15] |
Ramadan R A. Internet of things dataset for home renewable energy management[J]. Data in Brief, 2024, 53: 110166.
|
| [16] |
Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chemical Society Reviews, 2024, 53(6): 3134-3166.
|
| [17] |
Lenus S, Thakur P, Megha, et al. Lithium transfer dynamics and storage capacity/cyclability properties of Ni and Ru dual-doped two-dimensional FePS3 nanoflakes[J]. Materials Research Bulletin, 2024, 176: 112837.
|
| [18] |
Zheng H N, Peng S, Liang S Z, et al. Progress and challenges of Ni-rich layered cathodes for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2025, 35(16): 2418274.
|
| [19] |
Akhilash M, Salini P S, John B, et al. Surface modification on nickel rich cathode materials for lithium-ion cells: a mini review[J]. The Chemical Record, 2023, 23(11): e202300132.
|
| [20] |
Wang Z, Li L, Heo H, et al. Synthesis and characterization of core-shell high-nickel cobalt-free layered LiNi0.95Mg0.02Al0.03O2@Li2ZrO3 cathode for high-performance lithium ion batteries[J]. Journal of Colloid and Interface Science, 2024, 666: 424-433.
|
| [21] |
Kumar D, Ramesha K. Comprehensive study of Ti and Ta co-doping in Ni-rich cathode material LiNi0.8Mn0.1Co0.1O2 towards improving the electrochemical performance[J]. ChemPhysChem, 2024, 25(13): e202400064.
|
| [22] |
Yang X R, Huang Y X, Li J H, et al. Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability[J]. Energy Materials, 2023, 3: 300029.
|
| [23] |
Chu B B, Xu R Y, Li G X, et al. Simultaneous B/W dual coating on ultra-high nickel single crystal cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2023, 577: 233260.
|
| [24] |
Lei H L, Peng M, Liu J, et al. Boron & nitrogen synergistically enhance the performance of LiNi0.6Co0.1Mn0.3O2 [J]. Journal of Alloys and Compounds, 2023, 959: 170522.
|
| [25] |
Chen Y G, Tian H L, Cai Y J, et al. Preparing Li6V3(PO4)5 cathode with boron-doped carbon layer as a cathode material for lithium-ion batteries[J]. Energy Technology, 2024, 12(7): 2301537.
|
| [26] |
Ren X X, Wang G R, Chen T L, et al. A surface-bulk integrated strategy of Ti doping and LaTiO3 coating achieves highly reversible anionic redox and fast-charging cyclability in cobalt-free lithium-rich layered oxides[J]. Advanced Functional Materials, 2025, 35(22): 2422482.
|
| [27] |
Yu Z Z, Tong Q L, Cheng Y, et al. Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering[J]. Energy Materials, 2022, 2(5): 37.
|
| [28] |
Shen Y B, Zhang X Y, Wang L C, et al. A universal multifunctional rare earth oxide coating to stabilize high-voltage lithium layered oxide cathodes[J]. Energy Storage Materials, 2023, 56: 155-164.
|
| [29] |
Li D J, Yang P H, Deng Q, et al. Stabilizing Ni-rich single-crystalline LiNi0.83Co0.07Mn0.10O2 cathodes using Ce/Gd co-doped high-entropy composite surfaces[J]. Angewandte Chemie International Edition, 2024, 63(10): e202318042.
|
| [30] |
Chang L J, Hou Z L, Yang W, et al. The theory guides the doping of rare earth elements in the bulk phase of LiNi0.6Co0.2Mn0.2O2 to reach the theoretical limit of energy density[J]. Journal of Colloid and Interface Science, 2025, 682: 340-352.
|
| [31] |
Sun Y B, Chang C K, Zheng J N. Doping effects on ternary cathode materials for lithium-ion batteries: a review[J]. ChemPhysChem, 2024, 25(17): e202300966.
|
| [32] |
Yu X K, Scipioni R, Xu Y B, et al. Beneficial effects of La0.5Sr0.5CoO3 coatings on thin-film LiMn2O4 cathodes for lithium ion batteries[J]. Advanced Sustainable Systems, 2023, 7(9): 2300137.
|
| [33] |
Mei Y, Liu J X, Cui T, et al. Defect chemistry in high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, DOI: 10.1002/adma.202411311 .
|
| [34] |
Bae J H, Hwang K, Kim J, et al. Enhanced electrochemical performance of Ni-rich cathode for lithium ion batteries under elevated cut-off voltage (4.5 V): elongated cycle stability of cathode by relaxed mechanical stress in the presence of internal porous layer[J]. Journal of Electroanalytical Chemistry, 2024, 957: 118123.
|
| [35] |
Zybert M, Ronduda H, Dąbrowska K, et al. Suppressing Ni/Li disordering in LiNi0.6Mn0.2Co0.2O2 cathode material for Li-ion batteries by rare earth element doping[J]. Energy Reports, 2022, 8: 3995-4005.
|