化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3719-3732.DOI: 10.11949/0438-1157.20241516
郭铮铮1,2(
), 赵一丹1, 王辅强1, 裴璐1, 靳彦岭1, 任芳1,2, 任鹏刚1(
)
收稿日期:2024-12-30
修回日期:2025-03-02
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
任鹏刚
作者简介:郭铮铮(1995—),男,博士,讲师,guozz@xaut.edu.cn
基金资助:
Zhengzheng GUO1,2(
), Yidan ZHAO1, Fuqiang WANG1, Lu PEI1, Yanling JIN1, Fang REN1,2, Penggang REN1(
)
Received:2024-12-30
Revised:2025-03-02
Online:2025-07-25
Published:2025-08-13
Contact:
Penggang REN
摘要:
随着现代无线通信技术的蓬勃发展和广泛应用,自由空间充斥着大量的电磁波,造成严重的电磁辐射污染。开发强电磁波吸收能力的复合材料是解决这一问题常用且有效的策略。为此,通过简单的两步溶剂热法制备了异质结构MoS2/RGO/NiFe2O4(MRN)复合材料。MoS2和NiFe2O4的引入不仅有效缓解了RGO高电导率造成的阻抗失配,而且丰富了电磁波损耗机制。改善的阻抗匹配和丰富的电磁波损耗机制的协同作用使MRN3复合材料在石蜡基体中填充比为15%(质量分数)时,实现了强的最小反射损耗(-54.13 dB)和宽的有效吸收带宽(6.27 GHz)。此外,雷达散射截面模拟有力证实了MRN复合材料在实际应用中的有效性。
中图分类号:
郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732.
Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture[J]. CIESC Journal, 2025, 76(7): 3719-3732.
图2 (a)X射线衍射谱图;(b)Raman谱图;(c)磁滞回线;(d)XPS谱图;MRN3的高分辨率XPS谱图:(e) C 1s,(f) Mo 3d,(g) S 2p,(h) Fe 2p和(i) Ni 2p (1 Oe=79.5775 A/m, 1 emu=103 A/m)
Fig.2 (a) XRD patterns; (b) Raman spectra; (c) Magnetic hysteresis loops; (d) XPS spectra of the prepared samples; High-resolution XPS spectra of (e) C 1s, (f) Mo 3d, (g) S 2p, (h) Fe 2p, (i) Ni 2p of MRN3 (1 Oe=79.5775 A/m, 1 emu=103 A/m)
图3 (a) NiFe2O4,(b)、(f) MRN1,(c)、(g) MRN2,(d)、(h) MRN3和 (e) MoS2/RGO的扫描电镜图; (i) MRN3复合材料的面扫描结果
Fig.3 SEM images of (a) NiFe2O4, (b),(f) MRN1, (c),(g) MRN2, (d), (h) MRN3 and (e) MoS2/RGO; (i) EDS mapping images of MRN3
图4 (a)~(c)MRN1-15,(d)~(f)MRN2-15和(g)~(i)MRN3-15的二维反射损耗图、三维反射损耗图和顶视图
Fig.4 2D RL curves, 3D RL profiles and top views of (a)—(c) MRN1-15, (d)—(f) MRN2-15 and (g)—(i) MRN3-15
图5 MRN复合材料的(a)介电常数实部,(b)介电常数虚部,(c)介电损耗正切,(d)磁导率实部,(e)磁导率虚部,(f)磁损耗正切,(g)~(i)Cole-Cole曲线和(j)C0曲线
Fig.5 (a) ε′ values, (b) ε″ values, (c) dielectric loss tangent, (d) μ′ values, (e) μ″ values, (f) magnetic loss tangent, (g)—(i) Cole-Cole curves and (j) C0 curves of MRN composites
图6 3.64 mm厚度下不同样品的(a)阻抗匹配、(b)衰减常数;(c)3.64 mm厚度下MRN3-15样品的反射损耗、衰减常数与阻抗匹配间的关系;(d)3.64 mm厚度下不同样品的反射损耗;(e)不同厚度MRN3-15复合材料的反射损耗、匹配厚度和阻抗匹配间的关系
Fig.6 (a) Impedance matching and (b) attenuation constant of the prepared samples with the thickness of 3.64 mm; (c) The relationship between RL, attenuation constant and impedance matching of MRN3 composite with the thickness of 3.64 mm; (d) RL values of various samples with the thickness of 3.64 mm; (e) The relationship between RL, tm and impedance matching of MRN3 composite with various thicknesses
图7 (a)~(c)MRN3-10、(d)~(f)MRN3-15和(g)~(i)MRN3-20的二维反射损耗曲线、三维反射损耗图和顶视图
Fig.7 2D RL curves, 3D RL profiles and top views of (a)—(c) MRN3-10, (d)—(f) MRN3-15 and (g)—(i) MRN3-20
图8 MRN3-10、MRN3-15和MRN3-20的(a)介电常数实部、(b)介电常数虚部、(c)介电损耗正切、(d)磁导率实部、(e)磁导率虚部、(f)磁损耗正切和(g)~(i)Cole-Cole曲线
Fig.8 (a) ε′ values, (b) ε″ values, (c) dielectric loss tangent, (d) μ′ values, (e) μ″ values and (f) magnetic loss and (g)—(i) Cole-Cole curves of MRN3-10, MRN3-15 and MRN3-20
图9 MRN3在不同填充比下的(a)阻抗匹配(3.64 mm厚度下)、(b)衰减常数和(c)C0曲线
Fig.9 (a) Impedance matching at thickness of 3.64 mm, (b) attenuation constant and (c) C0 curves of MRN3 under different filling ratios
图10 (a)MRN复合材料的电磁波吸收机理示意图;(b)本工作与已报道工作在反射损耗及厚度方面的比较;(c)本工作与已报道工作在反射损耗、有效吸收带宽、填料含量方面的综合对比
Fig.10 (a) Schematic diagram of the EMW absorption mechanism of MRN composites; (b) A comparison with previously reported works based on the thickness and reflection loss; (c) A comprehensive comparison according to the absorber content, EAB and RLmin
| 样品 | 填料含量/% | RLmin/dB | tm/mm | EAB /GHz | 文献 |
|---|---|---|---|---|---|
| Cu/Cu2O-CF@MoS2 | 40 | -56.0 | 4.0 | 4.14 | [ |
| nano-carbon foam | 30 | -48.61 | 2.0 | 5.35 | [ |
| Fe3C@NC/GO | 20 | -40.05 | 2.1 | 3.17 | [ |
| RGO/SiO2 | 30 | -47.43 | 3.8 | 12.72 | [ |
| Fe/Fe3O4@C@MoS2 | 60 | -36.1 | 1.8 | 5.9 | [ |
| Ni-MoS2/TiO2/Ti3C2T x | 60 | -48.04 | 2.5 | 3.28 | [ |
| VSe2/CNT | 50 | -50.06 | 6.19 | 3.32 | [ |
| PEDOT/Fe3O4/rGO | 30 | -52.4 | 1.46 | 3.52 | [ |
| Co/CoO/RGO | 50 | -32.4 | 3.5 | 4.2 | [ |
| NiFe2O4/Fe3O4/PANI/MWCNT | — | -47.5 | 4.6 | 4.0 | [ |
| 1T′-MoSe2/GO | 10 | -52.08 | 1.8 | 5.3 | [ |
| MoS2/RGO/NiFe2O4 (MRN) | 15 | -54.13 | 3.64 | 6.27 | 本工作 |
表1 制备的样品与最近报道的材料综合对比
Table 1 Comprehensive comparison of the prepared samples with recently reported materials
| 样品 | 填料含量/% | RLmin/dB | tm/mm | EAB /GHz | 文献 |
|---|---|---|---|---|---|
| Cu/Cu2O-CF@MoS2 | 40 | -56.0 | 4.0 | 4.14 | [ |
| nano-carbon foam | 30 | -48.61 | 2.0 | 5.35 | [ |
| Fe3C@NC/GO | 20 | -40.05 | 2.1 | 3.17 | [ |
| RGO/SiO2 | 30 | -47.43 | 3.8 | 12.72 | [ |
| Fe/Fe3O4@C@MoS2 | 60 | -36.1 | 1.8 | 5.9 | [ |
| Ni-MoS2/TiO2/Ti3C2T x | 60 | -48.04 | 2.5 | 3.28 | [ |
| VSe2/CNT | 50 | -50.06 | 6.19 | 3.32 | [ |
| PEDOT/Fe3O4/rGO | 30 | -52.4 | 1.46 | 3.52 | [ |
| Co/CoO/RGO | 50 | -32.4 | 3.5 | 4.2 | [ |
| NiFe2O4/Fe3O4/PANI/MWCNT | — | -47.5 | 4.6 | 4.0 | [ |
| 1T′-MoSe2/GO | 10 | -52.08 | 1.8 | 5.3 | [ |
| MoS2/RGO/NiFe2O4 (MRN) | 15 | -54.13 | 3.64 | 6.27 | 本工作 |
图11 (a)PEC、(b)MRN1-15、(c)MRN2-15、(d)MRN3-15的三维雷达散射截面模拟图;(e)MRN1-15、MRN2-15、MRN3-15在不同入射角度下的雷达散射截面模拟曲线;(f)MRN在特定入射角度下雷达散射截面信号减小值
Fig.11 3D RCS plots for the (a) PEC substrates and PEC substrates covered with (b) MRN1-15, (c) MRN2-15, (d) MRN3-15; (e) RCS simulation curves of MRN1-15, MRN2-15, MRN3-15 under various incident angels; (f) RCS reduction values of the prepared MRN at specific angles
| [1] | Zhao X X, Huang Y, Liu X D, et al. Hollow multi-layer bowknot like nanoparticles surface modified by TMDs derived flexible fiber membranes for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 483: 149085. |
| [2] | 汤进, 林斌, 毕松, 等. 轻薄炭黑涂层的制备及其微波吸收性能研究[J]. 化工学报, 2019, 70(11): 4469-4477. |
| Tang J, Lin B, Bi S, et al. Preparation and microwave absorption properties of light and thin carbon black coating[J]. CIESC Journal, 2019, 70(11): 4469-4477. | |
| [3] | Yu S L, Guo W Q, Zhou Z L, et al. Rough-endoplasmic-reticulum-like hierarchical composite structures for efficient mechanical-electromagnetic wave-energy attenuation[J]. Advanced Functional Materials, 2024, 34(14): 2312835. |
| [4] | 胡兴枝, 张皓焱, 庄境坤, 等. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
| Hu X Z, Zhang H Y, Zhuang J K, et al. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles[J]. CIESC Journal, 2023, 74(8): 3584-3596. | |
| [5] | Su Y, Jiang B, Shen H C, et al. Mesoporous carbon spheres modified with atomically dispersed iron sites for efficient electromagnetic wave absorption[J]. Carbon, 2025, 231: 119699. |
| [6] | Zhang Y J, Liu R, Liu C Y, et al. Metal foams for the interfering energy conversion: electromagnetic wave absorption, shielding, and sound attenuation[J]. Journal of Materials Science & Technology, 2025, 215: 258-282. |
| [7] | Tong Y C, Guo X, Liu C, et al. Shellular SiCN ceramics with integrated structure and function realizing full electromagnetic wave absorption in the X-band[J]. Journal of the European Ceramic Society, 2024, 44(8): 5055-5067. |
| [8] | Wang C, Huang M Q, Zhu H, et al. Confined magnetic nickel nanoparticles in carbon microspheres with high-performance electromagnetic wave absorption in Ku-band[J]. Composites Communications, 2024, 51: 102099. |
| [9] | Xiao J Y, Wen B, Liu X F, et al. In-situ growth of carbon nanotubes for the modification of wood-derived biomass porous carbon to achieve efficient low/mid-frequency electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2024, 676: 33-44. |
| [10] | Gao Z G, Iqbal A, Hassan T, et al. Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption[J]. Advanced Materials, 2024, 36(19): 2311411. |
| [11] | Wang X Y, Xing X F, Zhu H S, et al. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective[J]. Advances in Colloid and Interface Science, 2023, 318: 102960. |
| [12] | Li Q Q, Zhao Y H, Li X H, et al. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance[J]. Small, 2020, 16(42): 2003905. |
| [13] | Saha S, Chakraborty T, Saha A, et al. A multi-layer design of hexaferrite decorated graphene derivatives incorporated PVDF nanocomposite films; understanding the role of GO/rGO for outstanding electromagnetic wave absorption at microwave frequencies[J]. Carbon, 2024, 220: 118829. |
| [14] | Yang X, Shi Y B, Zhang H Z, et al. Utilizing a synergistic strategy that combines electromagnetic and chemical enhancement to analyze the SERS effect of the Fe3O4@GO@Ag on PAHs detection[J]. Journal of Colloid and Interface Science, 2025, 678: 532-539. |
| [15] | 吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. |
| Wu H H, Fu W X, Liu S K, et al. Study on preparation and microwave absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. | |
| [16] | Zhao B, Yan Z K, Liu L L, et al. A liquid-metal-assisted competitive galvanic reaction strategy toward indium/oxide core-shell nanoparticles with enhanced microwave absorption[J]. Advanced Functional Materials, 2024, 34(18): 2314008. |
| [17] | Cao X L, Jia Z R, Hu D Q, et al. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1030-1043. |
| [18] | Li B, Ma Z Q, Zhang X, et al. NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption[J]. Small, 2023, 19(12): 2207197. |
| [19] | Wu Z C, Cheng H W, Jin C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022, 34(11): 2107538. |
| [20] | Lan X L, Wang R, Liu W B, et al. Multicomponent synergistic flower-like FeS/hollow C fiber for tunable and efficient microwave absorption[J]. Chemical Engineering Journal, 2024, 485: 149238. |
| [21] | Yan S Y, Shao S P, Tang Y X, et al. Ultralight hierarchical Fe3O4/MoS2/rGO/Ti3C2T x MXene composite aerogels for high-efficiency electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2024, 16(28): 36962-36972. |
| [22] | Jiang Q L, Xu L, Tang Z M, et al. A competitive strategy toward 1T/2H MoS2 to balance impedance for optimizing electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 491: 151854. |
| [23] | Zhao J, He M K, Guo H, et al. Multidimensional construction of 1T-MoS2@graphene nanosheets nanocomposites for enhanced electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2025, 218: 35-44. |
| [24] | 李月霞, 吴梦, 纪子影, 等. Ti3C2T x /Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 25-31. |
| Li Y X, Wu M, Ji Z Y, et al. Behavior and mechanism of microwave absorbing and electromagnetic interference shielding of Ti3C2T x /Fe3O4 nanocomposites[J]. Materials Reports, 2024, 38(9): 25-31. | |
| [25] | 武丹丹, 王政炎, 张含笑, 等. 磁性CoFe/Ni4Zn/FeO/rGO复合材料的制备及电磁波吸收性能[J]. 微纳电子技术, 2024, 61(1): 66-75. |
| Wu D D, Wang Z Y, Zhang H X, et al. Preparation and electromagnetic wave absorption properties of magnetic CoFe/Ni4Zn/FeO/rGO composite material[J]. Micronanoelectronic Technology, 2024, 61(1): 66-75. | |
| [26] | Yuan M, Zhou M, Fu H Q. Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band[J]. Composites Part B: Engineering, 2021, 224: 109178. |
| [27] | Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
| [28] | 张路平, 杨晓凤, 郑海康, 等. 多孔Al2O3/SiC、MoSi2/SiC复合材料的制备及吸波性能[J]. 化工学报, 2019, 70(11): 4478-4485. |
| Zhang L P, Yang X F, Zheng H K, et al. Preparation and wave-absorbing properties of porous Al2O3/SiC and MoSi2/SiC composites[J]. CIESC Journal, 2019, 70(11): 4478-4485. | |
| [29] | 黄才华, 黄陈, 吴海华, 等. 熔融沉积成型Fe3O4-MWCNTs/PLA微波吸收材料性能[J]. 复合材料学报, 2024, 41(4): 1954-1967. |
| Huang C H, Huang C, Wu H H, et al. Properties of microwave absorbers formed by fused deposition modeling with Fe3O4-MWCNTs/PLA composite wire[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1954-1967. | |
| [30] | 马茜, 强荣, 邵玉龙, 等. 空心铁基碳纤维复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(2): 1058-1069. |
| Ma Q, Qiang R, Shao Y L, et al. Preparation and microwave absorption performance of hollow iron-based carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1058-1069. | |
| [31] | Su J H, Zhang X, Ma Z Q, et al. Construction of Fe3C@N-doped graphene layers yolk-shelled nanoparticles on the graphene sheets for high-efficient electromagnetic wave absorption[J]. Carbon, 2024, 229: 119448. |
| [32] | Nguyen V Q, Luu M D, Pham D T, et al. Facile process for cost-effective layer-by-layer rGO/SiO2 structure for high microwave absorption[J]. Ceramics International, 2024, 50(22): 47136-47144. |
| [33] | Liu Y L, Tian C H, Wang F Y, et al. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell[J]. Chemical Engineering Journal, 2023, 461: 141867. |
| [34] | Jia D J, Li X Y, Cai R Y, et al. Interfacial covalent bonding of Ni doped MoS2/TiO2/Ti3C2T x composites for electromagnetic wave absorption performance[J]. Applied Surface Science, 2023, 638: 158116. |
| [35] | Ma M, Zheng Q, Zhang X C, et al. VSe2/CNTs nanocomposites toward superior electromagnetic wave absorption performance[J]. Carbon, 2023, 212: 118159. |
| [36] | Xing C J, Xia A Q, Li W T, et al. Constructing multiple hetero-interfaces with rGO supported globular shaped PEDOT/Fe3O4 toward high-efficiency electromagnetic wave attenuation[J]. Carbon, 2025, 232: 119764. |
| [37] | Shu Y, Zhao T K, Abdul J, et al. High-efficient electromagnetic wave absorption of coral-like Co/CoO/RGO hybrid aerogels with good hydrophobic and thermal insulation properties[J]. Chemical Engineering Journal, 2023, 471: 144535. |
| [38] | Jamadi F, Seyed-Yazdi J, Ebrahimi-Tazangi F, et al. The impact of RGO and MWCNT/RGO on the microwave absorption of NiFe2O4@Fe3O4 in the presence or absence of PANI[J]. Journal of Materials Chemistry A, 2024, 12(47): 32981-33002. |
| [39] | Ling M Y, Wu J F, Liu P, et al. Three-dimensional n-MoSe2/GO x (n= 1T, 1T' and 2H) microsphere: phase-modulation strategy and microwave absorbing mechanism[J]. Carbon, 2024, 230: 119614. |
| [1] | 郭梁, 陈烨, 贾启明, 谢秀娟. 液氦贮罐的自增压理论模拟及实验研究[J]. 化工学报, 2025, 76(7): 3561-3571. |
| [2] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [3] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [4] | 梁碧麟, 余倩, 贾思琦, 李芳, 李其明. Ni-MOF-74金属有机框架膜的结构调变及气体分离性能研究[J]. 化工学报, 2025, 76(6): 2714-2721. |
| [5] | 刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, 2025, 76(6): 2939-2957. |
| [6] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| [7] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [8] | 赵浩帆, 任豪杰, 刘宗凯, 董冠英, 张亚涛. MOFs玻璃膜在气体分离领域的研究进展[J]. 化工学报, 2025, 76(5): 2042-2054. |
| [9] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
| [10] | 张冰, 李建惠, 马欣蓉, 陈杨, 李晋平, 李立博. 蒸气相辅助法制备MOF基材料的研究进展[J]. 化工学报, 2025, 76(5): 2026-2041. |
| [11] | 石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483. |
| [12] | 赵海钎, 陈方, 陈涛, 郭建维, 林文静, 杨楚芬. 叶酸修饰的pH响应共聚物混合胶束用于抗癌药物递送[J]. 化工学报, 2025, 76(4): 1702-1710. |
| [13] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| [14] | 王三龙, 王跃霖, 曹宇. 基于相异质结的高效无机钙钛矿太阳能电池的性能研究[J]. 化工学报, 2025, 76(3): 1346-1352. |
| [15] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号