| [1] |
赵豪, 吴志豪, 胡晓红, 等. 外加液滴条件下固体细颗粒声凝并特性[J]. 物理学报, 2023, 72(6): 265-273.
|
|
Zhao H, Wu Z H, Hu X H, et al. Acoustic agglomeration characteristics of fine solid particles under effect of additional droplets[J]. Acta Physica Sinica, 2023, 72(6): 265-273.
|
| [2] |
Ozdemir E, Miwa S, Porcheron E, et al. Aerosol deposition and dispersion during nuclear reactor decommissioning[J]. Nuclear Engineering and Design, 2023, 414: 112623.
|
| [3] |
Hamamcioglu S, Holton M M, Hussain N, et al. Experimental investigation of acoustic agglomeration and sonic soot deposition on smoke alarms incorporating emerging sounding technologies[J]. Fire Technology, 2022, 58(5): 2661-2689.
|
| [4] |
Shi Y, Wei J H, Qiao Z, et al. Investigation of strong acoustic interference on clouds and precipitation in the source region of the Yellow River using KaKu radar[J]. Atmospheric Research, 2022, 267: 105992.
|
| [5] |
Barrio-Zhang A, Anandan S, Deolia A, et al. Acoustically enhanced porous media enables dramatic improvements in filtration performance[J]. Separation and Purification Technology, 2024, 342: 126972.
|
| [6] |
Larki I, Zahedi A, Asadi M, et al. Mitigation approaches and techniques for combustion power plants flue gas emissions: a comprehensive review[J]. Science of the Total Environment, 2023, 903: 166108.
|
| [7] |
Zhang G X, Wang J Q, Chi Z H, et al. Acoustic agglomeration with addition of sprayed liquid droplets: three-dimensional discrete element modeling and experimental verification[J]. Chemical Engineering Science, 2018, 187: 342-353.
|
| [8] |
Zhang G X, Zhou T T, Zhang L L, et al. Improving acoustic agglomeration efficiency of coal-fired fly-ash particles by addition of liquid binders[J]. Chemical Engineering Journal, 2018, 334: 891-899.
|
| [9] |
Chang C, Wang Z K, Ji Z L. Experimental study on the removal of submicron droplets by fibrous filter media in a sound field[J]. Powder Technology, 2023, 429: 118902.
|
| [10] |
Sun D S, Zhang X D, Zhang Z Y, et al. Removal of inhalable particles from coal and refuse combustion by agglomeration with solid nuclei[J]. Particuology, 2018, 37: 127-133.
|
| [11] |
Shang X P, Wan M P, Ng B F, et al. A CFD-sectional algorithm for population balance equation coupled with multi-dimensional flow dynamics[J]. Powder Technology, 2020, 362: 111-125.
|
| [12] |
Liu Y, Pan C Y, Zhang L, et al. Experimental and numerical study on the acoustic coagulation of charged particles[J]. Powder Technology, 2022, 410: 117780.
|
| [13] |
Yang Y, Cao Q F, Wang Y, et al. Agglomeration of oil droplets assisted by low-frequency sonic pretreatment[J]. Powder Technology, 2023, 428: 118860.
|
| [14] |
Shi Y, Wei J H, Bai W W, et al. Numerical investigations of acoustic agglomeration of liquid droplet using a coupled CFD-DEM model[J]. Advanced Powder Technology, 2020, 31(6): 2394-2411.
|
| [15] |
Vekteris V, Ozarovskis D, Moksin V, et al. An efficiency study of the aerodynamic sound generators suitable for acoustic particle agglomeration[J]. Engineering, Technology & Applied Science Research, 2020, 10(2): 5561-5564.
|
| [16] |
Hoda Y, Asami T, Miura H. Aerosol agglomeration by aerial ultrasonic sources containing a cylindrical vibrating plate with the same diameter as a circular tube[J]. Japanese Journal of Applied Physics, 2022, 61: SG1073.
|
| [17] |
Kilikevičienė K, Kačianauskas R, Kilikevičius A, et al. Experimental investigation of acoustic agglomeration of diesel engine exhaust particles using new created acoustic chamber[J]. Powder Technology, 2020, 360: 421-429.
|
| [18] |
Wu Z H, Fan F X, Yan J P, et al. An adaptable direct simulation Monte Carlo method for simulating acoustic agglomeration of solid particles[J]. Chemical Engineering Science, 2022, 249: 117298.
|
| [19] |
Zhao H, Fan F X, Su J X, et al. An improved DSMC method for acoustic agglomeration of solid particles assisted by spray droplets[J]. International Journal of Multiphase Flow, 2024, 176: 104829.
|
| [20] |
周英贵, 许玥, 杨娜娜, 等. 声场中微米级颗粒间二元碰撞的离散元模拟[J]. 高校化学工程学报, 2025, 39(3): 391-440.
|
|
Zhou Y G, Xu Y, Yang N N, et al. Discrete element simulation of binary collision between micron particles in acoustic field[J]. Journal of Chemical Engineering of Chinese Universities, 2025, 39(3): 391-440.
|
| [21] |
Bruneau M. Fundamentals of Acoustics[M]. London: ISTE Ltd., 2006.
|
| [22] |
Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles[M]. 2nd ed. Boca Raton, Fla.: CRC Press, 2012.
|
| [23] |
Higashitani K, Makino H, Matsusaka S. Powder Technology Handbook[M]. 4th ed. Boca Raton, FL: CRC Press, 2019.
|
| [24] |
Song L M. Modeling of acoustic agglomeration of fine aerosol particles[D]. Pennsylvania: The Pennsylvania State University, 1990.
|
| [25] |
Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology, 1998, 95(3): 254-264.
|
| [26] |
Júnior O L S, Sommerfeld M. Influence of inter-particle collisions and agglomeration on cyclone performance and collection efficiency[J]. The Canadian Journal of Chemical Engineering, 2019, 97(2): 511-522.
|
| [27] |
He Y X, Zhao H B. Conservative particle weighting scheme for particle collision in gas-solid flows[J]. International Journal of Multiphase Flow, 2016, 83: 12-26.
|
| [28] |
归柯庭, 汪军, 王秋颖. 工程流体力学[M]. 3版. 北京: 科学出版社, 2020.
|
|
Gui K T, Wang J, Wang Q Y. Engineering fluid mechanics[M]. 3rd ed. Beijing: Science Press, 2020.
|
| [29] |
Bertin J J, Cummings R M. Aerodynamic for Engineers[M]. 6th ed. New York: Cambridge University Press, 2022.
|
| [30] |
杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 2版. 南京: 南京大学出版社, 2012.
|
|
Du G H, Zhu Z M, Gong X F. Acoustics Foundation[M]. 2nd ed. Nanjing: Nanjing University Press, 2012.
|
| [31] |
Kleinhans U, Wieland C, Frandsen F J, et al. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior[J]. Progress in Energy and Combustion Science, 2018, 68: 65-168.
|
| [32] |
Fan F X, Zhang M J, Peng Z B, et al. Direct simulation Monte Carlo method for acoustic agglomeration under standing wave condition[J]. Aerosol and Air Quality Research, 2017, 17(4): 1073-1083.
|
| [33] |
Komarov S V, Kuwabara M, Abramov O V. High power ultrasonics in pyrometallurgy: current status and recent development[J]. ISIJ International, 2005, 45(12): 1765-1782.
|