| 1 |
Ai Z T, Melikov A K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: a review[J]. Indoor Air, 2018, 28(4): 500-524.
|
| 2 |
叶深, 王鹏, 黄祎, 等. 长三角城市群城市空间形态对PM2.5与O3污染空间异质性特征的影响研究[J]. 生态环境学报, 2023, 32(10): 1771-1784.
|
|
Ye S, Wang P, Huang Y, et al. Urban morphology and the influence of the spatial heterogeneity of PM2.5 and O3 pollution: the case of the Yangtze River Delta[J]. Ecology and Environmental Sciences, 2023, 32(10): 1771-1784.
|
| 3 |
Lippmann M, Chen L C, Gordon T, et al. National particle component toxicity (NPACT) initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components[J]. Research Report (Health Effects Institute), 2013(177): 5-13.
|
| 4 |
Dinkele R, Khan P Y, Warner D F. Mycobacterium tuberculosis transmission: the importance of precision[J]. The Lancet Infectious Diseases, 2024, 24(7): 679-681.
|
| 5 |
Pinho-Go Pinho-Gomes A C, Roaf E, Fuller G, et al. Air pollution and climate change[J]. The Lancet Planetary Health, 2023, 7(9): e727-e728.
|
| 6 |
俞建, 俞洁, 应倩, 等. 浙江省基于卫星遥感数据的气溶胶光学厚度与肺癌的相关性[J]. 肿瘤防治研究, 2020, 47(10): 776-781.
|
|
Yu J, Yu J, Ying Q, et al. Association of aerosol optical depth based on satellite remote sensing data and lung cancer in Zhejiang Province[J]. Cancer Res. Prev. Treat., 2020, 47(10): 776-781.
|
| 7 |
李金娟, 邵龙义, 杨书申. 可吸入颗粒物的健康效应机制[J]. 环境与健康杂志, 2006, 23(2): 185-188.
|
|
Li J J, Shao L Y, Yang S S. Adverse effect mechanisms of inhalable particulate matters[J]. Journal of Environment and Health, 2006, 23(2): 185-188.
|
| 8 |
Clark T L. Use of log-normal distributions for numerical calculations of condensation and collection[J]. Journal of the Atmospheric Sciences, 1976, 33(5): 810-821.
|
| 9 |
Beneš M, Holub R F. Aerosol wall deposition in enclosures investigated by means of a stagnant layer[J]. Environment International, 1996, 22: 883-889.
|
| 10 |
Cheng Y S. Wall deposition of radon progeny and particles in a spherical chamber[J]. Aerosol Science and Technology, 1997, 27(2): 131-146.
|
| 11 |
Corner J, Pendlebury E. The coagulation and deposition of a stirred aerosol[J]. Proceedings of the Physical Society. Section B, 1951, 64(8): 645.
|
| 12 |
Crump J G, Seinfeld J H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape[J]. Journal of Aerosol Science, 1981, 12(5): 405-415.
|
| 13 |
Crump J G, Flagan R C, Seinfeld J H. Particle wall loss rates in vessels[J]. Aerosol Science and Technology, 1982, 2(3): 303-309.
|
| 14 |
Okuyama K, Kousaka Y, Yamamoto S, et al. Particle loss of aerosols with particle diameters between 6 and 2000 nm in stirred tank[J]. Journal of Colloid and Interface Science, 1986, 110(1): 214-223.
|
| 15 |
Holub R F, Raes F, Dingenen R V, et al. Deposition of aerosols and unattached radon daughters in different chambers; Theory and experiment[J]. Radiation Protection Dosimetry, 1988, 24: 217-220.
|
| 16 |
van Dingenen R, Raes F, Vanmarcke H. Molecule and aerosol particle wall losses in SMOG chambers made of glass[J]. Journal of Aerosol Science, 1989, 20(1): 113-122.
|
| 17 |
Wang F, Chan T L. A new sorting algorithm-based merging weighted fraction Monte Carlo method for solving the population balance equation for particle coagulation dynamics[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(2): 881-911.
|
| 18 |
Chen Y J, Ding J, Xia X, et al. Reconstruction-based Monte Carlo method for accurate and efficient breakage simulation[J]. Powder Technology, 2022, 401: 117318.
|
| 19 |
Mishra B K. Monte Carlo simulation of particle breakage process during grinding[J]. Powder Technology, 2000, 110(3): 246-252.
|
| 20 |
Kotalczyk G, Devi J, Kruis F E. A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles[J]. Powder Technology, 2017, 317: 417-429.
|
| 21 |
Liu H, Jiang W, Liu W, et al. Monte Carlo simulation of polydisperse particle deposition and coagulation dynamics in enclosed chambers[J]. Vacuum, 2021, 184: 109952.
|
| 22 |
涂茂萍, 张丹, 袁洋, 等. 静止颗粒群热辐射吸收性能的蒙特卡罗法二维数值研究[J]. 西安交通大学学报, 2024, 58(5): 167-178.
|
|
Tu M P, Zhang D, Yuan Y, et al. Thermal radiation absorption properties of two-dimensional stationary particle groups based on the Monte-Carlo method[J]. Journal of Xi'an Jiao Tong University, 2024, 58(5): 167-178.
|
| 23 |
帅永, 董士奎, 刘林华. 高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J]. 红外与毫米波学报, 2005, 24(2): 100-104.
|
|
Shuai Y, Dong S K, Liu L H. Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte-Carlo method[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 100-104.
|
| 24 |
Gelbard F, Tambour Y, Seinfeld J H. Sectional representations for simulating aerosol dynamics [J]. Journal of Colloid and Interface Science, 1980, 76(2): 541-556.
|
| 25 |
Xiong Y, Pratsinis S E. Formation of agglomerate particles by coagulation and sintering(part Ⅰ): A two-dimensional solution of the population balance equation[J]. Journal of Aerosol Science, 1991, 24: 283-300.
|
| 26 |
Jeong J I, Choi M. Analysis of non-spherical polydisperse particle growth in a two-dimensional tubular reactor[J]. Journal of Aerosol Science, 2003, 34: 713-732.
|
| 27 |
柳冠青, 李水清, 曹文广, 等. 细颗粒湍流聚并的分区法群平衡模拟[J]. 工程热物理学报, 2021, 42(4): 938-943.
|
|
Liu G Q, Li S Q, Cao W G, et al. Modelling on the turbulence agglomeration of fine particles with sectional method of population balance model[J]. Journal of Engineering Thermophysics, 2021, 42(4): 938-943.
|
| 28 |
Guichard R, Belut E. Simulation of airborne nanoparticles transport, deposition and aggregation: experimental validation of a CFD-QMOM approach[J]. Journal of Aerosol Science, 2017, 104: 16-31.
|
| 29 |
刘演华, 林建忠. 两相流中颗粒参数分布的矩方法研究[J]. 空气动力学学报, 2009, 27(6): 656-663.
|
|
Liu Y H, Lin J Z. Research on method of momens of particulate parameter distribution in multiphase flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 656-663.
|
| 30 |
Pratsinis S E. Simultaneous nucleation, condensation, and coagulation in aerosol reactors[J]. Journal of Colloid and Interface Science, 1988, 124(2): 416-427.
|
| 31 |
Pratsinis S E, Kodas T T, Duduković M P, et al. Aerosol reactor design: effect of reactor type and process parameters on product aerosol characteristics[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(3): 634-642.
|
| 32 |
Yu M, Lin J, Cao J. Seipenbusch M. An analytical solution for the population balance equation using a moment method[J]. Particuology, 2015, 18: 194-200.
|
| 33 |
Park S H, Lee K W. Moment method for aerosol deposition[J]. Journal of Aerosol Science, 2000, 31: 845-846.
|
| 34 |
Xu G P, Wang J S. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room[J]. Atmospheric Environment, 2017, 166: 300-314.
|
| 35 |
Xu G P, Wang J S, Qiao X Q. Numerical study on evolution of ultrafine particles emitted from vehicle exhaust with multi-dynamical behaviors[J]. Atmospheric Environment, 2021, 244: 117916.
|
| 36 |
Walther E, Bogdan M. A novel approach for the modelling of air quality dynamics in underground railway stations[J]. Transportation Research Part D: Transport and Environment, 2017, 56: 33-42.
|
| 37 |
Lee K W, Lee Y J, Han D S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J]. Journal of Colloid and Interface Science, 1997, 188(2): 486-492.
|
| 38 |
Park S H, Lee K W. Analytical solution to change in size distribution of polydisperse particles in closed chamber due to diffusion and sedimentation[J]. Atmospheric Environment, 2002, 36(25): 5459-5467.
|