化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4369-4382.DOI: 10.11949/0438-1157.20250063
收稿日期:2025-01-15
修回日期:2025-02-12
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
杨晓光
作者简介:娄岚浩(2000—),男,硕士研究生,3220220311@bit.edu.cn
基金资助:
Lanhao LOU1,2(
), Lipeng YANG1,2, Xiaoguang YANG1,2(
)
Received:2025-01-15
Revised:2025-02-12
Online:2025-09-25
Published:2025-10-23
Contact:
Xiaoguang YANG
摘要:
锂离子电池因其高能量密度、低成本与长循环寿命在近年来得到广泛应用,电池模型的研究也迅速发展。与等效电路模型相比,机理模型能够对不同温度、不同工况下电池的性能表现进行高精度预测,然而模型的精度高度依赖参数的精度,传统侵入式测量方法烦琐且精度无法保证,基于电压、电流等数据对电池模型的参数进行辨识成为研究的热门。综述了锂离子电池机理模型参数辨识的关键步骤,包括模型建立、参数敏感性分析以及最终的参数寻优。
中图分类号:
娄岚浩, 杨立鹏, 杨晓光. 锂离子电池电化学机理模型参数辨识研究综述[J]. 化工学报, 2025, 76(9): 4369-4382.
Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models[J]. CIESC Journal, 2025, 76(9): 4369-4382.
| 机理 | 控制方程 | 边界条件 |
|---|---|---|
| 输出电压 | ||
| 固相传质 | ||
| 液相传质 | ||
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 反应动力学 | ||
表1 DFN模型控制方程
Table 1 Equations of DFN model
| 机理 | 控制方程 | 边界条件 |
|---|---|---|
| 输出电压 | ||
| 固相传质 | ||
| 液相传质 | ||
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 反应动力学 | ||
| 分类 | 符号 | 意义 | 相关性 | 单位 | 测试方法 |
|---|---|---|---|---|---|
| 几何参数 | 正极厚度 | SoH | |||
| 隔膜厚度 | SoH | ||||
| 负极厚度 | SoH | ||||
| 活性电极面积 | BET[ | ||||
| 正极活性材料体积分数 | X,SoH | ||||
| 负极活性材料体积分数 | X,SoH | ||||
| 正极孔隙率 | X,SoH | 压汞法[ | |||
| 隔膜孔隙率 | 真密度,SEM | ||||
| 负极孔隙率 | X,SoH | 压汞法 | |||
| 正极材料颗粒半径 | 激光粒度(DLS)[ 激光粒度(DLS)[ | ||||
| 负极材料颗粒半径 | |||||
| 传质参数 | 正极材料固相扩散系数 | SoC,T | GITT[ 滴定(PITT)[ | ||
| 负极材料固相扩散系数 | SoC,T | ||||
| 电解液液相扩散系数 | Ce,T | 脉冲弛豫[ | |||
| 电解液阳离子迁移数 | Ce,T | 浓差电池[ | |||
| 正极电导率 | 四探针法 四探针法 | ||||
| 负极电导率 | |||||
| 电解液离子电导率 | Ce,T | 电导率测试仪 | |||
| 反应动力学参数 | 正极反应速率常数 | SoC,T | EIS[ EIS[ | ||
| 负极反应速率常数 | SoC,T | ||||
| SEI膜电阻率 | SoH,T | ||||
| 正极开路电势 | SoC,T | GITT、PITT GITT、PITT | |||
| 负极开路电势 | SoC,T | ||||
| 参考浓度参数 | 正极最大嵌锂浓度 | ||||
| 负极最大嵌锂浓度 | |||||
| 电解液初始浓度 | |||||
| 外电路参数 | 输出/输入电流 | ||||
| 集流体电阻率 |
表2 DFN模型主要参数
Table 2 Parameters of DFN model
| 分类 | 符号 | 意义 | 相关性 | 单位 | 测试方法 |
|---|---|---|---|---|---|
| 几何参数 | 正极厚度 | SoH | |||
| 隔膜厚度 | SoH | ||||
| 负极厚度 | SoH | ||||
| 活性电极面积 | BET[ | ||||
| 正极活性材料体积分数 | X,SoH | ||||
| 负极活性材料体积分数 | X,SoH | ||||
| 正极孔隙率 | X,SoH | 压汞法[ | |||
| 隔膜孔隙率 | 真密度,SEM | ||||
| 负极孔隙率 | X,SoH | 压汞法 | |||
| 正极材料颗粒半径 | 激光粒度(DLS)[ 激光粒度(DLS)[ | ||||
| 负极材料颗粒半径 | |||||
| 传质参数 | 正极材料固相扩散系数 | SoC,T | GITT[ 滴定(PITT)[ | ||
| 负极材料固相扩散系数 | SoC,T | ||||
| 电解液液相扩散系数 | Ce,T | 脉冲弛豫[ | |||
| 电解液阳离子迁移数 | Ce,T | 浓差电池[ | |||
| 正极电导率 | 四探针法 四探针法 | ||||
| 负极电导率 | |||||
| 电解液离子电导率 | Ce,T | 电导率测试仪 | |||
| 反应动力学参数 | 正极反应速率常数 | SoC,T | EIS[ EIS[ | ||
| 负极反应速率常数 | SoC,T | ||||
| SEI膜电阻率 | SoH,T | ||||
| 正极开路电势 | SoC,T | GITT、PITT GITT、PITT | |||
| 负极开路电势 | SoC,T | ||||
| 参考浓度参数 | 正极最大嵌锂浓度 | ||||
| 负极最大嵌锂浓度 | |||||
| 电解液初始浓度 | |||||
| 外电路参数 | 输出/输入电流 | ||||
| 集流体电阻率 |
| 类型 | 方法 | 模型 | 工况 | 分析目标 | 优缺点 | 文献 |
|---|---|---|---|---|---|---|
| 局部 | 方差 | DFN | 恒流恒压充电、WLTP | 电压、 | 考虑多种工况以及对负极点位的敏感性,但计算量大且OAT存在局限性 | [ |
| 局部 | 方差 | DFN+热阻网络 | 恒流放电 | 电压、温度 | 模型能够预测电压及温度,但实验复杂 | [ |
| 局部 | 方差 | SPMe | 恒流放电 | 电压 | 有效简化模型,减少计算量,但适用工况少,存在局限性 | [ |
| 全局 | Morris | SPM | 恒流恒压充电、恒流放电、FUDS | 电压 | 采样方法高效,但简化模型存在局限性 | [ |
| 全局 | 偏相 关性 | DFN | 恒流充电、FUDS | 电压误差 | 全面分析老化参数,并进行收敛性分析,确保可靠性,但模型复杂,计算量大 | [ |
表3 锂离子电池机理模型参数敏感性研究相关文献
Table 3 Related literature on sensitivity analysis for physics-based lithium-ion battery models
| 类型 | 方法 | 模型 | 工况 | 分析目标 | 优缺点 | 文献 |
|---|---|---|---|---|---|---|
| 局部 | 方差 | DFN | 恒流恒压充电、WLTP | 电压、 | 考虑多种工况以及对负极点位的敏感性,但计算量大且OAT存在局限性 | [ |
| 局部 | 方差 | DFN+热阻网络 | 恒流放电 | 电压、温度 | 模型能够预测电压及温度,但实验复杂 | [ |
| 局部 | 方差 | SPMe | 恒流放电 | 电压 | 有效简化模型,减少计算量,但适用工况少,存在局限性 | [ |
| 全局 | Morris | SPM | 恒流恒压充电、恒流放电、FUDS | 电压 | 采样方法高效,但简化模型存在局限性 | [ |
| 全局 | 偏相 关性 | DFN | 恒流充电、FUDS | 电压误差 | 全面分析老化参数,并进行收敛性分析,确保可靠性,但模型复杂,计算量大 | [ |
| 模型 | 算法 | 优化参数 | 辨识结果 | 优缺点 | 文献 |
|---|---|---|---|---|---|
| DFN | GA | 17个标量参数、71函数参数 | 误差<5% | 研究框架全面,实验数据丰富,但参数设置较多,计算成本高 | [ |
| DFN | GA | 恒流工况MAE< 25 mV 动态工况MAE<80 mV | 平均电极模型简化合理,实验验证全面,但简化模型适用有限 | [ | |
| DFN | PSO | 仅图示 | 优化算法简单高效,但辨识参数范围有限 | [ | |
| SPMe | 自适应PSO | 恒流工况RMSE<30 mV; 脉冲工况RMSE<30 mV | 模型简化合理,算法高效,但验证工况较少 | [ | |
| DFN | CSA | 恒流工况RMSE 9 mV; WLTP工况RMSE 12.7 mV | 多目标优化框架提升精度,但数据需求量大 | [ |
表4 元启发式优化算法相关文献
Table 4 Related literature on metaheuristic optimization algorithms
| 模型 | 算法 | 优化参数 | 辨识结果 | 优缺点 | 文献 |
|---|---|---|---|---|---|
| DFN | GA | 17个标量参数、71函数参数 | 误差<5% | 研究框架全面,实验数据丰富,但参数设置较多,计算成本高 | [ |
| DFN | GA | 恒流工况MAE< 25 mV 动态工况MAE<80 mV | 平均电极模型简化合理,实验验证全面,但简化模型适用有限 | [ | |
| DFN | PSO | 仅图示 | 优化算法简单高效,但辨识参数范围有限 | [ | |
| SPMe | 自适应PSO | 恒流工况RMSE<30 mV; 脉冲工况RMSE<30 mV | 模型简化合理,算法高效,但验证工况较少 | [ | |
| DFN | CSA | 恒流工况RMSE 9 mV; WLTP工况RMSE 12.7 mV | 多目标优化框架提升精度,但数据需求量大 | [ |
| 特性 | GA | PSO | CSA |
|---|---|---|---|
| 全局搜索能力 | 强 | 中等 | 强 |
| 收敛速度 | 慢 | 快 | 中等 |
| 计算开销 | 高 | 低 | 中等 |
| 参数依赖性 | 高 | 中等 | 低 |
| 实现难度 | 高 | 低 | 低 |
| 理论基础 | 强 | 强 | 弱 |
| 适用问题 | 连续、离散、组合优化 | 连续优化 | 连续、离散、组合优化 |
表5 不同元启发式优化算法对比
Table 5 Comparison of different metaheuristic optimization algorithms
| 特性 | GA | PSO | CSA |
|---|---|---|---|
| 全局搜索能力 | 强 | 中等 | 强 |
| 收敛速度 | 慢 | 快 | 中等 |
| 计算开销 | 高 | 低 | 中等 |
| 参数依赖性 | 高 | 中等 | 低 |
| 实现难度 | 高 | 低 | 低 |
| 理论基础 | 强 | 强 | 弱 |
| 适用问题 | 连续、离散、组合优化 | 连续优化 | 连续、离散、组合优化 |
| [1] | Rani S, Jayapragash R. Review on electric mobility: trends, challenges and opportunities[J]. Results in Engineering, 2024, 23: 102631. |
| [2] | 李凌云. 中国新能源汽车用锂电池产业现状及发展趋势[J]. 电源技术, 2020, 44(4): 628-630. |
| Li L Y. Current status and development trend of Li-ion batteries for new energy vehicles in China[J]. Chinese Journal of Power Sources, 2020, 44(4): 628-630. | |
| [3] | Wang Y J, Tian J Q, Sun Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. |
| [4] | Nozarijouybari Z, Fathy H K. Machine learning for battery systems applications: progress, challenges, and opportunities[J]. Journal of Power Sources, 2024, 601: 234272. |
| [5] | Demirci O, Taskin S, Schaltz E, et al. Review of battery state estimation methods for electric vehicles-Part Ⅱ: SOH estimation[J]. Journal of Energy Storage, 2024, 96: 112703. |
| [6] | Plett G L. Battery Management Systems. volume I: Battery Modeling[M]. Boston·Longdon: Artech House, 2015. |
| [7] | Lin X Y, Tang Y L, Ren J, et al. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102840. |
| [8] | Wu M Y, Qin L L, Wu G. State of power estimation of power lithium-ion battery based on an equivalent circuit model[J]. Journal of Energy Storage, 2022, 51: 104538. |
| [9] | Chen L P, Bao X Y, Lopes A M, et al. State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method[J]. Journal of Energy Storage, 2023, 73: 109195. |
| [10] | Lai X, Sun L, Chen Q W, et al. A novel modeling methodology for hysteresis characteristic and state-of-charge estimation of LiFePO4 batteries[J]. Journal of Energy Storage, 2024, 101: 113807. |
| [11] | Wycisk D, Oldenburger M, Stoye M G, et al. Modified Plett-model for modeling voltage hysteresis in lithium-ion cells[J]. Journal of Energy Storage, 2022, 52: 105016. |
| [12] | Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[J]. Journal of Power Sources, 2004, 134(2): 262-276. |
| [13] | Koseoglou M, Tsioumas E, Panagiotidis I, et al. A lithium-ion battery equivalent circuit model based on a hybrid parametrization approach[J]. Journal of Energy Storage, 2023, 73: 109051. |
| [14] | Vyroubal P, Kazda T. Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy[J]. Journal of Energy Storage, 2018, 15: 23-31. |
| [15] | Wang J F, Jia Y K, Yang N, et al. Precise equivalent circuit model for Li-ion battery by experimental improvement and parameter optimization[J]. Journal of Energy Storage, 2022, 52: 104980. |
| [16] | Liu K L, Niri M F, Apachitei G, et al. Interpretable machine learning for battery capacities prediction and coating parameters analysis[J]. Control Engineering Practice, 2022, 124: 105202. |
| [17] | Guo F, Wu X W, Liu L L, et al. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network[J]. Energy, 2023, 270: 126880. |
| [18] | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
| [19] | Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1-10. |
| [20] | Ning G, Popov B N. Cycle life modeling of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(10): A1584. |
| [21] | Wang A A, O'Kane S E J, Planella F B, et al. Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models[J]. Progress in Energy, 2022, 4(3): 032004. |
| [22] | Birkl C R, Roberts M R, McTurk E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
| [23] | Marquis S G, Sulzer V, Timms R, et al. An asymptotic derivation of a single particle model with electrolyte[J]. Journal of the Electrochemical Society, 2019, 166(15): A3693-A3706. |
| [24] | Alkhedher M, Al Tahhan A B, Yousaf J, et al. Electrochemical and thermal modeling of lithium-ion batteries: a review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. |
| [25] | Ai W L, Kraft L, Sturm J, et al. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells[J]. Journal of the Electrochemical Society, 2020, 167(1): 013512. |
| [26] | Guo M, Sikha G, White R E. Single-particle model for a lithium-ion cell: thermal behavior[J]. Journal of the Electrochemical Society, 2010, 158(2): A122. |
| [27] | Wang D F, Huang H Q, Tang Z H, et al. A lithium-ion battery electrochemical-thermal model for a wide temperature range applications[J]. Electrochimica Acta, 2020, 362: 137118. |
| [28] | Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
| [29] | Li R H, Li W, Singh A, et al. Effect of external pressure and internal stress on battery performance and lifespan[J]. Energy Storage Materials, 2022, 52: 395-429. |
| [30] | Oh K Y, Epureanu B I, Siegel J B, et al. Phenomenological force and swelling models for rechargeable lithium-ion battery cells[J]. Journal of Power Sources, 2016, 310: 118-129. |
| [31] | Yang K, Zhang W K, Yin Y, et al. A hierarchical electrochemical-thermal-mechanical coupled model capable of predicting non-uniform behaviors in large-format Li-ion cells[J]. Journal of Power Sources, 2025, 629: 236049. |
| [32] | O'Regan K, Brosa Planella F, Widanage W D, et al. Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery[J]. Electrochimica Acta, 2022, 425: 140700. |
| [33] | Capron O, Gopalakrishnan R, Jaguemont J, et al. On the ageing of high energy lithium-ion batteries-comprehensive electrochemical diffusivity studies of harvested nickel manganese cobalt electrodes[J]. Materials, 2018, 11(2): 176. |
| [34] | Suthar B, Northrop P W C, Rife D, et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. Journal of the Electrochemical Society, 2015, 162(9): A1708-A1717. |
| [35] | Huang G Y, Xu S M, Lu S S, et al. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7236-7243. |
| [36] | Ecker M, Tran T K D, Dechent P, et al. Parameterization of a physico-chemical model of a lithium-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(9): A1836-A1848. |
| [37] | Eshel G, Levy G J, Mingelgrin U, et al. Critical evaluation of the use of laser diffraction for particle-size distribution analysis[J]. Soil Science Society of America Journal, 2004, 68(3): 736. |
| [38] | Schmalstieg J, Rahe C, Ecker M, et al. Full cell parameterization of a high-power lithium-ion battery for a physico-chemical model: part Ⅰ. Physical and electrochemical parameters[J]. Journal of the Electrochemical Society, 2018, 165(16): A3799-A3810. |
| [39] | Weppner W, Huggins R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124(10): 1569. |
| [40] | Pollard R, Comte T. Determination of transport properties for solid electrolytes from the impedance of thin layer cells[J]. Journal of the Electrochemical Society, 136(12): 3734-3748. |
| [41] | Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1- x CoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS[J]. Journal of the Electrochemical Society, 1999, 146(4): 1279-1289. |
| [42] | Landesfeind J, Gasteiger H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(14): A3079-A3097. |
| [43] | Chaouachi O, Réty J M, Génies S, et al. Experimental and theoretical investigation of Li-ion battery active materials properties: application to a graphite/Ni0.6Mn0.2Co0.2O2 system[J]. Electrochimica Acta, 2021, 366: 137428. |
| [44] | Schmid A U, Kurka M, Birke K P. Reproducibility of Li-ion cell reassembling processes and their influence on coin cell aging[J]. Journal of Energy Storage, 2019, 24: 100732. |
| [45] | Kong Y L, Yuan L X, Liao Y Q, et al. Efficient separation and selective Li recycling of spent LiFePO4 cathode[J]. Energy Materials, 2023, 3, 300053. |
| [46] | Chen C H, Brosa Planella F, O'Regan K, et al. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models[J]. Journal of the Electrochemical Society, 2020, 167(8): 080534. |
| [47] | Yang X G, Leng Y J, Zhang G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
| [48] | Kim J, Chun H Y, Kim M, et al. Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis[J]. Journal of Energy Storage, 2021, 42: 103077. |
| [49] | Uddin K, Perera S, Widanage W, et al. Characterising lithium-ion battery degradation through the identification and tracking of electrochemical battery model parameters[J]. Batteries, 2016, 2(2): 13. |
| [50] | Li W H, Demir I, Cao D C, et al. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence[J]. Energy Storage Materials, 2022, 44: 557-570. |
| [51] | Li W H, Cao D C, Jöst D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. |
| [52] | Zhang L Q, Lyu C, Hinds G, et al. Parameter sensitivity analysis of cylindrical LiFePO4 battery performance using multi-physics modeling[J]. Journal of the Electrochemical Society, 2014, 161(5): A762-A776. |
| [53] | 康鑫, 时玮, 陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术, 2020, 9(3): 969-978. |
| Kang X, Shi W, Chen H T. Parameter identification based on simplified electrochemical model of lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 969-978. | |
| [54] | Zeng X, Xu L, Deng Z W, et al. Global sensitivity analysis of battery single particle model parameters[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019: 1-6. |
| [55] | Gao Y Z, Zhang X, Zhu C, et al. Global parameter sensitivity analysis of electrochemical model for lithium-ion batteries considering aging[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1283-1294. |
| [56] | Samadi M F, Saif M. Identifiability analysis of an electrochemical model of Li-ion battery[C]//2016 American Control Conference (ACC). IEEE, 2016: 3107-3112. |
| [57] | Edouard C, Petit M, Forgez C, et al. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging[J]. Journal of Power Sources, 2016, 325: 482-494. |
| [58] | Tian A N, Dong K L, Yang X G, et al. Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method[J]. Applied Energy, 2025, 378: 124748. |
| [59] | Saltelli A. Global Sensitivity Analysis: the Primer[M]. Hoboken: John Wiley, 2008. |
| [60] | Grandjean T R B, Li L Y, Odio M X, et al. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019: 1-7. |
| [61] | Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280. |
| [62] | Lin N, Xie X Z, Schenkendorf R, et al. Efficient global sensitivity analysis of 3D multiphysics model for Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1169-A1183. |
| [63] | Castro M T, Del Rosario J A D, Chong M N, et al. Multiphysics modeling of lithium-ion, lead-acid, and vanadium redox flow batteries[J]. Journal of Energy Storage, 2021, 42: 102982. |
| [64] | Tao J J, Wang S L, Cao W, et al. A comprehensive review of multiple physical and data-driven model fusion methods for accurate lithium-ion battery inner state factor estimation[J]. Batteries, 2024, 10(12): 442. |
| [65] | Wei Z B, Zhao J Y, He H W, et al. Future smart battery and management: advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489: 229462. |
| [66] | Du X H, Meng J H, Peng J C, et al. Sensorless temperature estimation of lithium-ion battery based on broadband impedance measurements[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10101-10105. |
| [67] | Huang F X, Yang H, Liu B, et al. Real-time monitoring of temperature field distribution of three-element LiB lithium battery using FBG arrays[J]. IEEE Sensors Journal, 2023, 23(24): 30473-30480. |
| [68] | Murty K G, Kabadi S N. Some NP-complete problems in quadratic and nonlinear programming[J]. Mathematical Programming, 1987, 39(2): 117-129. |
| [69] | Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming[M]. Philadelphia: SIAM Studies in Applied Mathematics, 1994. |
| [70] | Courant R. Variational methods for the solution of problems of equilibrium and vibrations[R]. Lecture Notes in Pure and Applied Mathematics, 1994. |
| [71] | Lemaréchal C. Cauchy and the gradient method[J]. Doc Math Extra, 2012, 251(254): 10. |
| [72] | Bonnans J F, Gilbert J C, Lemaréchal C, et al. Numerical Optimization: Theoretical and Practical Aspects[M]. Berlin·Heidelberg: Springer Science & Business Media, 2006. |
| [73] | Guillaume J H A, Jakeman J D, Marsili-Libelli S, et al. Introductory overview of identifiability analysis: a guide to evaluating whether you have the right type of data for your modeling purpose[J]. Environmental Modelling & Software, 2019, 119: 418-432. |
| [74] | Dennis J E Jr, Schnabel R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996. |
| [75] | Floudas C A, Pardalos P M. Encyclopedia of Optimization [M]. 2nd ed. New York: Springer Science & Business Media, 2008. |
| [76] | Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168. |
| [77] | Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
| [78] | Deng Z W, Deng H, Yang L, et al. Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy, 2017, 138: 509-519. |
| [79] | Alhijawi B, Awajan A. Genetic algorithms: theory, genetic operators, solutions, and applications[J]. Evolutionary Intelligence, 2024, 17(3): 1245-1256. |
| [80] | Gen M, Lin L. Genetic Algorithms and Their Applications[M]. London: Springer, 2023: 635-674. |
| [81] | Forman J C, Moura S J, Stein J L, et al. Genetic identification and fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cell[J]. Journal of Power Sources, 2012, 210: 263-275. |
| [82] | 徐兴, 王位, 陈龙. 基于GA的车用锂离子电池电化学模型参数辨识[J]. 汽车工程, 2017, 39(7): 813-821, 838. |
| Xu X, Wang W, Chen L. Parameter identification of electrochemical model for vehicular lithium ion battery based on genetic algorithm[J]. Automotive Engineering, 2017, 39(7): 813-821, 838. | |
| [83] | Gad A G. Particle swarm optimization algorithm and its applications: a systematic review[J]. Archives of Computational Methods in Engineering, 2022, 29(5): 2531-2561. |
| [84] | Shami T M, El-Saleh A A, Alswaitti M, et al. Particle swarm optimization: a comprehensive survey[J]. IEEE Access, 2022, 10: 10031-10061. |
| [85] | Rahman M A, Anwar S, Izadian A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method[J]. Journal of Power Sources, 2016, 307: 86-97. |
| [86] | Yang X S, Deb S. Cuckoo search via lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009: 210-214. |
| [87] | Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330. |
| [88] | Ma X Y, Zhang W K, Yin Y, et al. Multi-objective optimization of lithium-ion battery designs considering the dilemma between energy density and rate capability[J]. Energy and AI, 2024, 18: 100416. |
| [1] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [2] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [3] | 刘璐, 王文玥, 王腾, 王太, 董新宇, 汤建成, 王少恒. 基于双混合工质深冷的氢液化工艺优化与分析[J]. 化工学报, 2025, 76(9): 4933-4943. |
| [4] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [5] | 李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577. |
| [6] | 周光正, 钟子翰, 黄彦群, 王学重. 基于原位成像与图像分析技术的结晶过程智能监测[J]. 化工学报, 2025, 76(9): 4351-4368. |
| [7] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [8] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [9] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [10] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [11] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [12] | 陈治宏, 吴佳伟, 楼小玲, 贠军贤. 化学品生物制造过程机器学习的研究进展[J]. 化工学报, 2025, 76(8): 3789-3804. |
| [13] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [14] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [15] | 张景皓, 王亚君, 张永康. 基于NRBO-SLSTM的化工过程运行状态评价[J]. 化工学报, 2025, 76(8): 4145-4154. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号