| [1] |
Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694.
|
| [2] |
Zhong H, Liu D H, Yuan X Y, et al. Advanced micro/nanostructure silicon-based anode materials for high-energy lithium-ion batteries: from liquid- to solid-state batteries[J]. Energy & Fuels, 2024, 38(9): 7693-7732.
|
| [3] |
Zülke A, Korotkin I, Foster J M, et al. Parametrisation and use of a predictive DFN model for a high-energy NCA/gr-SiO x battery[J]. Journal of the Electrochemical Society, 2021, 168(12): 120522.
|
| [4] |
Cheng Z L, Jiang H, Zhang X L, et al. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(26): 2301109.
|
| [5] |
Li Z L, Yang Y Z, Wang J, et al. Sandwich-like structure C/SiO x @graphene anode material with high electrochemical performance for lithium ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 1947-1953.
|
| [6] |
Qi Y, Wang G, Li S, et al. Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 397: 125380.
|
| [7] |
邱治文, 吴爱民, 王杰, 等. Si基锂离子电池负极材料研究进展[J]. 化工进展, 2021, 40(S1): 253-269.
|
|
Qiu Z W, Wu A M, Wang J, et al. Research progress of Si-based anode materials for Li-ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 253-269.
|
| [8] |
McDowell M T, Lee S W, Harris J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2): 758-764.
|
| [9] |
Chae S, Choi S H, Kim N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(1): 110-135.
|
| [10] |
Jin Y, Li S, Kushima A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10(2): 580-592.
|
| [11] |
程伟江, 汪何琦, 高翔, 等. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584.
|
|
Cheng W J, Wang H Q, Gao X, et al. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 571-584.
|
| [12] |
Zhang Y X, Wu B R, Mu G, et al. Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage[J]. Journal of Energy Chemistry, 2022, 64: 615-650.
|
| [13] |
Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7): 2949-2954.
|
| [14] |
Huang X, Cen D C, Wei R, et al. Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26854-26862.
|
| [15] |
Salah M, Hall C, Alvarez de Eulate E, et al. Compressively stressed silicon nanoclusters as an antifracture mechanism for high-performance lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39195-39204.
|
| [16] |
Pang D, Weng W, Zhou J, et al. Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts[J]. Journal of Energy Chemistry, 2021, 55: 102-107.
|
| [17] |
Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241.
|
| [18] |
孙国庆, 李海波, 丁志阳, 等. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211.
|
|
Sun G Q, Li H B, Ding Z Y, et al. Research progress of silicon-based anode materials[J]. China Industrial Economics, 2025, 76(7): 3197-3211.
|
| [19] |
Li H D, Li H Y, Lai Y Z, et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability[J]. Advanced Energy Materials, 2022, 12(7): 2102181.
|
| [20] |
Sun C, Sun L, Zhang Y X, et al. Reduced graphene oxide-modified NiCo-phosphates on Ni foam enabling high areal capacitances for asymmetric supercapacitors[J]. Journal of Materials Science & Technology, 2021, 90: 255-263.
|
| [21] |
Bai L Q, Zhang Y H, Tong W S, et al. Graphene for energy storage and conversion: synthesis and interdisciplinary applications[J]. Electrochemical Energy Reviews, 2020, 3(2): 395-430.
|
| [22] |
Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090.
|
| [23] |
Zhao Y J, Ding C H, Hao Y N, et al. Neat design for the structure of electrode to optimize the lithium-ion battery performance[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27106-27115.
|
| [24] |
Keles O, Karahan B D, Eryilmaz L, et al. Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries[J]. Nano Energy, 2020, 76: 105094.
|
| [25] |
Quan L J, Su Q L, Lei H Z, et al. Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries[J]. National Science Review, 2025, 12(7): nwaf084.
|
| [26] |
Baddour-Hadjean R, Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chemical Reviews, 2010, 110(3): 1278-1319.
|
| [27] |
Jones R R, Hooper D C, Zhang L W, et al. Raman techniques: fundamentals and frontiers[J]. Nanoscale Research Letters, 2019, 14(1): 231.
|
| [28] |
Smit C, Swaaij V, Donker H, et al. Determining the material structure of microcrystalline silicon from Raman spectra[J]. Journal of Applied Physics, 2003, 94: 3582-3588.
|
| [29] |
Brenot R, Vanderhaghen R, Drevillon B, et al. Contactless electronic transport analysis of microcrystalline silicon[J]. Thin Solid Films, 1999, 337(1/2): 63-66.
|
| [30] |
Ma Z X, Liao X B, Kong G L, et al. Raman scattering of nanocrystalline silicon embedded in SiO2 [J]. Science in China Series A: Mathematics, 2000, 43(4): 414-420.
|
| [31] |
Tsu D, Chao B, Ovshinsky S, et al. Effect of hydrogen dilution on the structure of amorphous silicon alloys[J]. Applied Physics Letters, 1997, 71: 1317-1319.
|
| [32] |
Richter H, Wang Z P, Ley L. The one phonon Raman spectrum in microcrystalline silicon[J]. Solid State Communications, 1981, 39(5): 625-629.
|
| [33] |
Yue G Z, Lorentzen J D, Lin J, et al. Photoluminescence and Raman studies in thin-film materials: transition from amorphous to microcrystalline silicon[J]. Applied Physics Letters, 1999, 75(4): 492-494.
|
| [34] |
Zi J, Büscher H, Falter C. Raman shifts in Si nanocrystals[J]. Applied Physics Letters, 1996, 69: 200-202.
|
| [35] |
Wang C D, Li Y, Ostrikov K, et al. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 646: 966-972.
|
| [36] |
Li Y C, Zheng X Y, Cao Z, et al. Unveiling the mechanisms into Li-trapping induced (ir)reversible capacity loss for silicon anode[J]. Energy Storage Materials, 2023, 55: 660-668.
|