化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2279-2293.DOI: 10.11949/0438-1157.20241210
唐磊(
), 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪(
), 董晋湘
收稿日期:2024-10-31
修回日期:2024-11-30
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
石琪
作者简介:唐磊(1997—),男,硕士研究生,1193580514@qq.com
基金资助:
Lei TANG(
), Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI(
), Jinxiang DONG
Received:2024-10-31
Revised:2024-11-30
Online:2025-05-25
Published:2025-06-13
Contact:
Qi SHI
摘要:
Co-MOF-74和Mg-MOF-74分别代表具有强和弱CO结合位点的材料,其常温常压下的CO吸附容量不能评估其在CO/N2变压吸附过程的适用性。通过不同操作条件下的单组分静态和双组分动态穿透实验,研究Co-MOF-74和Mg-MOF-74的CO工作吸附容量、再生性和吸附热(Qst)及其对应的操作温度和吸-脱附压力。结果表明,当CO/N2组成为50%/50%时,Co-MOF-74的最佳操作条件为100℃、3.0~0.2 bar(吸附-解吸总压),CO工作吸附容量和再生性分别为2.85 mmol·g-1和83.82%;而Mg-MOF-74为25℃、2.0~0.2 bar,CO工作吸附容量和再生性分别为1.63 mmol·g-1和79.51%。Co-MOF-74在100℃下的Qst(34.57 kJ·mol-1)与Mg-MOF-74在25℃下的Qst(35.45 kJ·mol-1)相近,表明具有不同结合位点的吸附剂对CO的Qst在35.00 kJ·mol-1左右所对应的温度为最佳操作温度。研究结果可以为具有不同CO结合位点的吸附剂的变压吸附工艺设计提供参考。
中图分类号:
唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293.
Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74[J]. CIESC Journal, 2025, 76(5): 2279-2293.
图1 测试CO/N2穿透曲线的装置示意图V-1,V-2,V-3,V-4,V-5,V-6,V-7—球阀;V-8—背压调节器;MFC—质量流量控制器;L-1—混合罐;L-2—吸附柱;VP—真空泵;MS—质谱分析仪;P1—吸附柱前压力表;P2—吸附柱后压力表;P3—真空泵前压力表;Vent—排空
Fig.1 Diagram of device for testing CO/N2 breakthrough curve
图5 Co-MOF-74和Mg-MOF-74样品的N2吸-脱附等温线(77 K)和水蒸气吸-脱附等温线(298 K)
Fig.5 N2 adsorption-desorption isotherms (77 K) and water vapor adsorption-desorption isotherms (298 K) of Co-MOF-74 and Mg-MOF-74
图8 根据两种样品CO吸附等温线计算出的CO吸附容量、工作吸附容量和再生性
Fig.8 CO adsorption capacity, working capacity and regenerability of two samples were calculated based on CO adsorption isotherms
| 样品 | T/℃ | 吸附容量 | 工作吸附容量 | R/% | ||||
|---|---|---|---|---|---|---|---|---|
| p/bar | nCO/(mmol·g-1) | p/bar | ΔnCO/(mmol·g-1) | |||||
| 解吸 | 吸附 | 解吸 | 吸附 | |||||
| Co-MOF-74 | 25 | 0 | 0.5 | 5.38 | 0.1 | 0.5 | 1.04 | 19.33 |
| 60 | 0 | 0.5 | 4.75 | 0.1 | 0.5 | 1.70 | 35.79 | |
| 100 | 0 | 0.5 | 2.50 | 0.1 | 0.5 | 1.74 | 69.60 | |
| 140 | 0 | 0.5 | 0.93 | 0.1 | 0.5 | 0.77 | 82.80 | |
| 25 | 0 | 1.5 | 5.71 | 0.1 | 1.5 | 1.37 | 23.99 | |
| 60 | 0 | 1.5 | 5.44 | 0.1 | 1.5 | 2.39 | 43.93 | |
| 100 | 0 | 1.5 | 3.89 | 0.1 | 1.5 | 3.13 | 80.46 | |
| 140 | 0 | 1.5 | 2.10 | 0.1 | 1.5 | 1.94 | 92.38 | |
| 25 | 0 | 3.0 | 5.93 | 0.1 | 3.0 | 1.59 | 26.81 | |
| 60 | 0 | 3.0 | 5.75 | 0.1 | 3.0 | 2.70 | 46.96 | |
| 100 | 0 | 3.0 | 4.73 | 0.1 | 3.0 | 3.97 | 83.93 | |
| 140 | 0 | 3.0 | 3.12 | 0.1 | 3.0 | 2.96 | 94.87 | |
| Mg-MOF-74 | 25 | 0 | 0.5 | 2.83 | 0.1 | 0.5 | 1.86 | 65.72 |
| 60 | 0 | 0.5 | 1.17 | 0.1 | 0.5 | 0.88 | 75.21 | |
| 25 | 0 | 1.0 | 3.73 | 0.1 | 1.0 | 2.76 | 73.99 | |
| 60 | 0 | 1.0 | 1.92 | 0.1 | 1.0 | 1.63 | 84.90 | |
| 25 | 0 | 2.0 | 4.52 | 0.1 | 2.0 | 3.55 | 78.54 | |
| 60 | 0 | 2.0 | 2.82 | 0.1 | 2.0 | 2.53 | 89.72 | |
表1 Co-MOF-74和Mg-MOF-74的CO静态吸附容量、工作吸附容量和再生性总结
Table 1 Summary of static adsorption capacity, working capacity and regenerability of CO for Co-MOF-74 and Mg-MOF-74
| 样品 | T/℃ | 吸附容量 | 工作吸附容量 | R/% | ||||
|---|---|---|---|---|---|---|---|---|
| p/bar | nCO/(mmol·g-1) | p/bar | ΔnCO/(mmol·g-1) | |||||
| 解吸 | 吸附 | 解吸 | 吸附 | |||||
| Co-MOF-74 | 25 | 0 | 0.5 | 5.38 | 0.1 | 0.5 | 1.04 | 19.33 |
| 60 | 0 | 0.5 | 4.75 | 0.1 | 0.5 | 1.70 | 35.79 | |
| 100 | 0 | 0.5 | 2.50 | 0.1 | 0.5 | 1.74 | 69.60 | |
| 140 | 0 | 0.5 | 0.93 | 0.1 | 0.5 | 0.77 | 82.80 | |
| 25 | 0 | 1.5 | 5.71 | 0.1 | 1.5 | 1.37 | 23.99 | |
| 60 | 0 | 1.5 | 5.44 | 0.1 | 1.5 | 2.39 | 43.93 | |
| 100 | 0 | 1.5 | 3.89 | 0.1 | 1.5 | 3.13 | 80.46 | |
| 140 | 0 | 1.5 | 2.10 | 0.1 | 1.5 | 1.94 | 92.38 | |
| 25 | 0 | 3.0 | 5.93 | 0.1 | 3.0 | 1.59 | 26.81 | |
| 60 | 0 | 3.0 | 5.75 | 0.1 | 3.0 | 2.70 | 46.96 | |
| 100 | 0 | 3.0 | 4.73 | 0.1 | 3.0 | 3.97 | 83.93 | |
| 140 | 0 | 3.0 | 3.12 | 0.1 | 3.0 | 2.96 | 94.87 | |
| Mg-MOF-74 | 25 | 0 | 0.5 | 2.83 | 0.1 | 0.5 | 1.86 | 65.72 |
| 60 | 0 | 0.5 | 1.17 | 0.1 | 0.5 | 0.88 | 75.21 | |
| 25 | 0 | 1.0 | 3.73 | 0.1 | 1.0 | 2.76 | 73.99 | |
| 60 | 0 | 1.0 | 1.92 | 0.1 | 1.0 | 1.63 | 84.90 | |
| 25 | 0 | 2.0 | 4.52 | 0.1 | 2.0 | 3.55 | 78.54 | |
| 60 | 0 | 2.0 | 2.82 | 0.1 | 2.0 | 2.53 | 89.72 | |
图10 Co-MOF-74的CO/N2(体积比50%/50%)穿透曲线T—操作温度;Partial—CO吸附分压;Ad.—吸附总压;De.—解吸总压
Fig.10 CO/N2 (50%/50%, vol) breakthrough curves of Co-MOF-74T—operating temperature; Partial—CO adsorption partial pressure; Ad.—total adsorption pressure; De.—total desorption pressure
图11 Mg-MOF-74的CO/N2(体积比50%/50%)穿透曲线T—操作温度;Partial—CO吸附分压;Ad.—吸附总压;De.—解吸总压
Fig.11 CO/N2 (50%/50%, vol) breakthrough curves of Mg-MOF-74T—operating temperature; Partial—CO adsorption partial pressure; Ad.—total adsorption pressure; De.—total desorption pressure
图12 根据两种样品CO/N2穿透曲线计算出的CO吸附容量、工作吸附容量和再生性
Fig.12 CO adsorption capacity, working capacity and regenerability of two samples were calculated based on CO/N2 breakthrough curves
| 样品 | 进样组成(CO/N2) | T/℃ | 吸附容量 | 工作吸附容量 | R/% | ||||
|---|---|---|---|---|---|---|---|---|---|
| p/bar | nCO/(mmol·g-1) | p/bar | ΔnCO/(mmol·g-1) | ||||||
| 解吸 | 吸附 | 解吸 | 吸附 | ||||||
| Co-MOF-74 | 50%/50% | 25 | 0.07① 0② | 1.0① 0.5② | 3.30 | 0.2① 0.1② | 1.0① 0.5② | 1.51 | 45.76 |
| 60 | 3.00 | 1.74 | 58.00 | ||||||
| 100 | 2.70 | 2.10 | 77.78 | ||||||
| 140 | 1.74 | 1.39 | 79.88 | ||||||
| 25 | 0.07① 0② | 3.0① 1.5② | 4.25 | 0.2① 0.1② | 3.0① 1.5② | 2.13 | 50.12 | ||
| 60 | 4.02 | 2.66 | 66.17 | ||||||
| 100 | 3.40 | 2.85 | 83.82 | ||||||
| 140 | 2.60 | 2.27 | 87.31 | ||||||
| 25 | 0.07① 0② | 5.0① 2.5② | 4.92 | 0.2① 0.1② | 5.0① 2.5② | 2.86 | 58.13 | ||
| 60 | 4.61 | 3.30 | 71.58 | ||||||
| 100 | 3.82 | 3.44 | 90.05 | ||||||
| 140 | 3.08 | 2.82 | 91.56 | ||||||
| Mg-MOF-74 | 50%/50% | 25 | 0.07① | 1.0① | 1.40 | 0.2① | 1.0① | 0.93 | 66.43 |
| 60 | 0② | 0.5② | 0.81 | 0.1② | 0.5② | 0.63 | 77.77 | ||
| 25 | 0.07① | 2.0① | 2.05 | 0.2① | 2.0① | 1.63 | 79.51 | ||
| 60 | 0② | 1.0② | 1.27 | 0.1② | 1.0② | 1.02 | 80.31 | ||
| 25 | 0.07① | 3.0① | 2.20 | 0.2① | 3.0① | 1.96 | 89.09 | ||
| 60 | 0② | 1.5② | 1.61 | 0.1② | 1.5② | 1.45 | 90.06 | ||
表2 Co-MOF-74和Mg-MOF-74的CO动态吸附容量、工作吸附容量和再生性总结
Table 2 Summary of dynamic adsorption capacity, working capacity and regenerability of CO for Co-MOF-74 and Mg-MOF-74
| 样品 | 进样组成(CO/N2) | T/℃ | 吸附容量 | 工作吸附容量 | R/% | ||||
|---|---|---|---|---|---|---|---|---|---|
| p/bar | nCO/(mmol·g-1) | p/bar | ΔnCO/(mmol·g-1) | ||||||
| 解吸 | 吸附 | 解吸 | 吸附 | ||||||
| Co-MOF-74 | 50%/50% | 25 | 0.07① 0② | 1.0① 0.5② | 3.30 | 0.2① 0.1② | 1.0① 0.5② | 1.51 | 45.76 |
| 60 | 3.00 | 1.74 | 58.00 | ||||||
| 100 | 2.70 | 2.10 | 77.78 | ||||||
| 140 | 1.74 | 1.39 | 79.88 | ||||||
| 25 | 0.07① 0② | 3.0① 1.5② | 4.25 | 0.2① 0.1② | 3.0① 1.5② | 2.13 | 50.12 | ||
| 60 | 4.02 | 2.66 | 66.17 | ||||||
| 100 | 3.40 | 2.85 | 83.82 | ||||||
| 140 | 2.60 | 2.27 | 87.31 | ||||||
| 25 | 0.07① 0② | 5.0① 2.5② | 4.92 | 0.2① 0.1② | 5.0① 2.5② | 2.86 | 58.13 | ||
| 60 | 4.61 | 3.30 | 71.58 | ||||||
| 100 | 3.82 | 3.44 | 90.05 | ||||||
| 140 | 3.08 | 2.82 | 91.56 | ||||||
| Mg-MOF-74 | 50%/50% | 25 | 0.07① | 1.0① | 1.40 | 0.2① | 1.0① | 0.93 | 66.43 |
| 60 | 0② | 0.5② | 0.81 | 0.1② | 0.5② | 0.63 | 77.77 | ||
| 25 | 0.07① | 2.0① | 2.05 | 0.2① | 2.0① | 1.63 | 79.51 | ||
| 60 | 0② | 1.0② | 1.27 | 0.1② | 1.0② | 1.02 | 80.31 | ||
| 25 | 0.07① | 3.0① | 2.20 | 0.2① | 3.0① | 1.96 | 89.09 | ||
| 60 | 0② | 1.5② | 1.61 | 0.1② | 1.5② | 1.45 | 90.06 | ||
图13 两种样品的工作吸附容量循环性能T—操作温度;Ad.—吸附总压;De.—解吸总压
Fig.13 Working capacity cycling performance of two samplesT—operating temperature; Ad.—total adsorption pressure; De.—total desorption pressure
| 1 | Martinelli M, Gnanamani M K, LeViness S, et al. An overview of Fischer-Tropsch synthesis: XtL processes, catalysts and reactors[J]. Applied Catalysis A: General, 2020, 608: 117740. |
| 2 | Liu Y T, Deng D H, Bao X H. Catalysis for selected C1 chemistry[J]. Chem, 2020, 6(10): 2497-2514. |
| 3 | 霍猛, 彭晓婉, 赵金, 等. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313. |
| Huo M, Peng X W, Zhao J, et al. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids[J]. CIESC Journal, 2022, 73(12): 5305-5313. | |
| 4 | Ramírez-Santos Á A, Castel C, Favre E. A review of gas separation technologies within emission reduction programs in the iron and steel sector: current application and development perspectives[J]. Separation and Purification Technology, 2018, 194: 425-442. |
| 5 | Mondal P, Dang G S, Garg M O. Syngas production through gasification and cleanup for downstream applications—recent developments[J]. Fuel Processing Technology, 2011, 92(8): 1395-1410. |
| 6 | Flores-Granobles M, Saeys M. Dynamic pressure-swing chemical looping process for the recovery of CO from blast furnace gas[J]. Energy Conversion and Management, 2022, 258: 115515. |
| 7 | Lee H H, Lee J C, Joo Y J, et al. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process[J]. Applied Energy, 2014, 131: 425-440. |
| 8 | Li Y X, Li S S, Xue D M, et al. Incorporation of Cu(Ⅱ) and its selective reduction to Cu(Ⅰ) within confined spaces: efficient active sites for CO adsorption[J]. Journal of Materials Chemistry A, 2018, 6(19): 8930-8939. |
| 9 | Fakhraei Ghazvini M, Vahedi M, Najafi Nobar S, et al. Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104790. |
| 10 | Oh H, Beum H T, Yoon Y S, et al. Experiment and modeling of adsorption of CO from blast furnace gas onto CuCl/boehmite[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12176-12185. |
| 11 | 蔺彩虹, 王丽, 吴瑜, 等. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
| Lin C H, Wang L, Wu Y, et al. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O[J]. CIESC Journal, 2023, 74(5): 2013-2021. | |
| 12 | Oh H, Tae Beum H, Lee S Y, et al. Bed configurations in CO vacuum pressure swing adsorption process for basic oxygen furnace gas utilization: experiment, simulation, and techno-economic analysis[J]. Chemical Engineering Journal, 2023, 454: 140432. |
| 13 | He Y B, Xiang S C, Chen B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37): 14570-14573. |
| 14 | Ko K J, Kim H, Cho Y H, et al. Overview of carbon monoxide adsorption performance of pristine and modified adsorbents[J]. Journal of Chemical & Engineering Data, 2022, 67(7): 1599-1616. |
| 15 | Lopes F V S, Grande C A, Rodrigues A E. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance[J]. Chemical Engineering Science, 2011, 66(3): 303-317. |
| 16 | Huang H Y, Padin J, Yang R T. Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
| 17 | Feyzbar-Khalkhali-Nejad F, Hassani E, Rashti A, et al. Adsorption-based CO removal: principles and materials[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105317. |
| 18 | Peng J J, Xian S K, Xiao J, et al. A supported Cu(Ⅰ)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity[J]. Chemical Engineering Journal, 2015, 270: 282-289. |
| 19 | 梁晓武. Co-MOF-74的合成及CO/N2吸附分离性能的研究[D]. 太原: 太原理工大学, 2021. |
| Liang X W. Synthesis of Co-MOF-74 and study on adsorption and separation performance of CO/N2 [D]. Taiyuan: Taiyuan University of Technology, 2021. | |
| 20 | Evans A, Cummings M S, Luebke R, et al. Screening metal-organic frameworks for dynamic CO/N2 separation using complementary adsorption measurement techniques[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18336-18344. |
| 21 | Bloch E D, Hudson M R, Mason J A, et al. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations[J]. Journal of the American Chemical Society, 2014, 136(30): 10752-10761. |
| 22 | Evans A, Luebke R, Petit C. The use of metal-organic frameworks for CO purification[J]. Journal of Materials Chemistry A, 2018, 6(23): 10570-10594. |
| 23 | Kim H, Sohail M, Yim K, et al. Effective CO2 and CO separation using[M2(DOBDC)] (M = Mg, Co, Ni) with unsaturated metal sites and excavation of their adsorption sites[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7014-7021. |
| 24 | Pandey I, Lin L C, Chen C C, et al. Understanding carbon monoxide binding and interactions in M-MOF-74 (M = Mg, Mn, Ni, Zn)[J]. Langmuir, 2023, 39(50): 18187-18197. |
| 25 | Cheng M, Wang S H, Zhang Z Y, et al. High-throughput virtual screening of metal-organic frameworks for xenon recovery from exhaled anesthetic gas mixture[J]. Chemical Engineering Journal, 2023, 451: 138218. |
| 26 | Raganati F, Chirone R, Ammendola P. CO2 capture by temperature swing adsorption: working capacity As affected by temperature and CO2 partial pressure[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3593-3605. |
| 27 | Wang Z F, Li C L, Tang L, et al. The CO working capacity of Ni-MOF-74 and corresponding operating conditions for CO/N2 adsorption separation[J]. Industrial & Engineering Chemistry Research, 2024, 63(31): 13776-13786. |
| 28 | Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[J]. Journal of the American Chemical Society, 2006, 128(4): 1304-1315. |
| 29 | Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. Journal of the American Chemical Society, 2008, 130(33): 10870-10871. |
| 30 | Xue C L, Hao W M, Cheng W P, et al. CO adsorption performance of CuCl/activated carbon by simultaneous Reduction-Dispersion of mixed Cu(Ⅱ) salts[J]. Materials, 2019, 12(10): 1605. |
| 31 | Oliveira M L M, Miranda A A L, Barbosa C M B M, et al. Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(Ⅰ), Ni(Ⅱ) and Zn(Ⅱ)[J]. Fuel, 2009, 88(10): 1885-1892. |
| 32 | Cessford N F, Seaton N A, Düren T. Evaluation of ideal adsorbed solution theory as a tool for the design of metal-organic framework materials[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4911-4921. |
| 33 | Bae Y S, Lee C Y, Kim K C, et al. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites[J]. Angewandte Chemie (International Ed), 2012, 51(8): 1857-1860. |
| 34 | Choma J, Stachurska K, Marszewski M, et al. Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers[J]. Adsorption, 2016, 22(4): 581-588. |
| 35 | Tao L R, You Y Y, Liu X J. Numerical studies of CO separation and enrichment from blast furnace gas by using a CuCl/Y fixed bed[J]. Ironmaking & Steelmaking, 2021, 48(10): 1187-1199. |
| 36 | Basdogan Y, Sezginel K B, Keskin S. Identifying highly selective metal organic frameworks for CH4/H2 separations using computational tools[J]. Industrial & Engineering Chemistry Research, 2015, 54(34): 8479-8491. |
| 37 | Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie International Edition, 2011, 50(49): 11586-11596. |
| 38 | Tong M M, Yang Q Y, Xiao Y L, et al. Revealing the structure-property relationship of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15189-15198. |
| 39 | Jiang H X, Wang Q Y, Wang H Q, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NO x with NH3 [J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26817-26826. |
| 40 | Sun H, Ren D N, Kong R Q, et al. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks[J]. Microporous and Mesoporous Materials, 2019, 284: 151-160. |
| 41 | Wu Y Q, Chen Z A, Li B, et al. Highly selective adsorption of CO over N2 on CuCl-loaded SAPO-34 adsorbent[J]. Journal of Energy Chemistry, 2019, 36: 122-128. |
| 42 | Álvarez-Gutiérrez N, Gil M V, Rubiera F, et al. Adsorption performance indicators for the CO2/CH4 separation: application to biomass-based activated carbons[J]. Fuel Processing Technology, 2016, 142: 361-369. |
| [1] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [2] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [3] | 张越, 刘佳鑫, 马敬, 刘毅. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100. |
| [4] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [5] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [6] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [7] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [8] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [9] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [10] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [11] | 晋伊浩, 罗俊欣, 胡章茂, 王唯, 殷谦. 亲水改性硫酸镁/膨胀蛭石复合材料的吸附储热性能[J]. 化工学报, 2025, 76(4): 1852-1862. |
| [12] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [13] | 蔡天姿, 张海丰, 林海丹, 张子龙, 周鹏宇, 王柏林, 李小年. 硼掺杂氮基石墨烯检测变压器油中溶解气体CO和CO2的密度泛函理论研究[J]. 化工学报, 2025, 76(4): 1841-1851. |
| [14] | 陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721. |
| [15] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号