化工学报 ›› 2023, Vol. 74 ›› Issue (1): 469-478.DOI: 10.11949/0438-1157.20221078
收稿日期:
2022-08-01
修回日期:
2022-11-10
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
谈朋,孙林兵
作者简介:
党迎喜(1989—),女,博士研究生,201962104033@njtech.edu.cn
基金资助:
Yingxi DANG(), Peng TAN(), Xiaoqin LIU, Linbing SUN()
Received:
2022-08-01
Revised:
2022-11-10
Online:
2023-01-05
Published:
2023-03-20
Contact:
Peng TAN, Linbing SUN
摘要:
变温吸附是一种有效的二氧化碳(CO2)捕集技术,但变温过程需要消耗大量能量,尤其是加热和降温过程。将被动辐射制冷和太阳能加热相结合并应用于聚吡咯基氮掺杂多孔碳PPy-650对CO2的捕集过程,从而实现变温系统的低能耗。在吸附过程中,聚(偏氟乙烯-六氟丙烯)膜[P(VdF-HFP)HP]覆盖于吸附剂层,在太阳光照射下通过辐射冷却效应将吸附剂冷却至室温以下。对于脱附过程,将具有优异光热转换能力的PPy-650暴露在太阳光下,利用光能进行加热。整个加热和冷却过程完全由太阳能驱动,不需要额外消耗能量。700 W/m2模拟光下的吸附-脱附循环测试结果表明,PPy-650在这一变温吸附系统中具有良好的CO2工作容量(35.69 cm3/g)。经过真实太阳光下的吸附/脱附循环后,PPy-650的吸附能力未见下降。
中图分类号:
党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478.
Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating[J]. CIESC Journal, 2023, 74(1): 469-478.
图2 吸附装置与材料的表征(a)吸附装置照片(光功率计和温度测试仪分别用于记录太阳光强度和周围环境温度); (b),(c)176 μm厚的聚合物P(VdF-HFP)HP膜的SEM图(插图为该膜的照片); (d)P(VdF-HFP)HP膜的反射率和发射率; (e)辐射降温性能测试[于中国南京(30o51´~32o15´N,118o21´~118o46´E)室外环境中测得],包括太阳光强度、环境和P(VdF-HFP)HP膜的温度及两者的温差;(f)PPy-650在700 W/m2连续模拟光照射下的热成像图; (g)在700 W/m2连续模拟光照射下吸附剂的膜上温度(Solar heating)和膜下温度(Radiative cooling); (h)PPy-650和商业活性炭(Commercial AC)的光吸收度对比
Fig.2 Adsorption devices and characterization of the materials
Sample | SBET/ (m2/g) | Vt/ (cm3/g) | Vmicro/ (cm3/g) | 元素组成/%(质量) | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | 吡啶氮 | 吡咯氮 | 四级型氮 | ||||
PPy | 35 | 0.13 | 0.05 | 53.38 | 3.68 | 16.03 | — | — | — |
PPy-450 | 614 | 0.33 | 0.15 | 55.41 | 3.62 | 11.99 | 3.02 | 8.02 | 0.95 |
PPy-550 | 1096 | 0.51 | 0.44 | 52.51 | 3.65 | 9.95 | 3.20 | 5.84 | 0.91 |
PPy-650 | 2134 | 1.08 | 0.89 | 63.27 | 2.45 | 6.71 | 1.36 | 3.20 | 2.15 |
PPy-750 | 3163 | 1.50 | 1.39 | 84.26 | 2.80 | 2.22 | 0.34 | 1.04 | 0.84 |
表1 样品的理化性质
Table 1 Physicochemical properties of the samples
Sample | SBET/ (m2/g) | Vt/ (cm3/g) | Vmicro/ (cm3/g) | 元素组成/%(质量) | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | 吡啶氮 | 吡咯氮 | 四级型氮 | ||||
PPy | 35 | 0.13 | 0.05 | 53.38 | 3.68 | 16.03 | — | — | — |
PPy-450 | 614 | 0.33 | 0.15 | 55.41 | 3.62 | 11.99 | 3.02 | 8.02 | 0.95 |
PPy-550 | 1096 | 0.51 | 0.44 | 52.51 | 3.65 | 9.95 | 3.20 | 5.84 | 0.91 |
PPy-650 | 2134 | 1.08 | 0.89 | 63.27 | 2.45 | 6.71 | 1.36 | 3.20 | 2.15 |
PPy-750 | 3163 | 1.50 | 1.39 | 84.26 | 2.80 | 2.22 | 0.34 | 1.04 | 0.84 |
图8 CO2和N2吸附性能(a),(b)35℃和60℃, 1 bar下的样品吸附等温线; (c)样品的CO2工作容量; (d)样品的等量吸附热和再生率比较; (e)在700 W/m2模拟太阳光照射下, 吸附时装置的照片(Ⅰ)和热成像图(Ⅱ)以及脱附时装置的照片(Ⅲ)和热成像图(Ⅳ); (f)PPy-650的动态穿透曲线; (g)PPy-650的吸附-脱附循环过程; (h)真实太阳光下PPy-650的循环性能[2022年6月30日~7月9日在中国南京(30o51´~32o15´N,118o21´~118o46´E)测定, 红色虚线为700 W/m2模拟太阳光制热时PPy-650的穿透吸附量]
Fig.8 CO2 and N2 adsorption performance
1 | Gupta A, Paul A. Carbon capture and sequestration potential in India: a comprehensive review[J]. Energy Procedia, 2019, 160: 848-855. |
2 | Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
3 | Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
4 | Vitillo J G, Smit B, Gagliardi L. Introduction: carbon capture and separation[J]. Chemical Reviews, 2017, 117(14): 9521-9523. |
5 | 江南, 刘冰, 唐忠利, 等. 真空变温吸附捕集干烟道气中CO2的模拟研究[J]. 化工学报, 2019, 70(10): 4032-4042. |
Jiang N, Liu B, Tang Z L, et al. Simulation study on CO2 capture from dry flue gas by temperature vacuum swing adsorption[J]. CIESC Journal, 2019, 70(10): 4032-4042. | |
6 | Wang Y, Zhao L, Otto A, et al. A review of post-combustion CO2 capture technologies from coal-fired power plants[J]. Energy Procedia, 2017, 114: 650-665. |
7 | 许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818. |
Xu M M, Wang S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818. | |
8 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
9 | Borhani T N, Wang M H. Role of solvents in CO2 capture processes: the review of selection and design methods[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109299. |
10 | Zhao R K, Liu L C, Zhao L, et al. A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109285. |
11 | Hefti M, Mazzotti M. Postcombustion CO2 capture from wet flue gas by temperature swing adsorption[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15542-15555. |
12 | Chen L J, Deng S, Zhao R K, et al. Temperature swing adsorption for CO2 capture: thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117538. |
13 | Zanco S E, Mazzotti M, Gazzani M, et al. Modeling of circulating fluidized beds systems for post-combustion CO2 capture via temperature swing adsorption[J]. AIChE Journal, 2018, 64(5): 1744-1759. |
14 | Grande C A, Kvamsdal H, Mondino G, et al. Development of moving bed temperature swing adsorption (MBTSA) process for post-combustion CO2 capture: initial benchmarking in a NGCC context[J]. Energy Procedia, 2017, 114: 2203-2210. |
15 | Chen Y X, Shi Y M, Kou H, et al. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2911-2915. |
16 | Siala K, Chowdhury A K, Dang T D, et al. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia[J]. Nature Communications, 2021, 12: 4159. |
17 | Jung W, Park S, Lee K S, et al. Rapid thermal swing adsorption process in multi-beds scale with sensible heat recovery for continuous energy-efficient CO2 capture[J]. Chemical Engineering Journal, 2020, 392: 123656. |
18 | 刘博文, 邓帅, 李双俊, 等. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390. |
Liu B W, Deng S, Li S J, et al. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture[J]. CIESC Journal, 2020, 71(S1): 382-390. | |
19 | Koçak B, Fernandez A I, Paksoy H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. |
20 | Kannan N, Vakeesan D. Solar energy for future world: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 1092-1105. |
21 | Wang S C, Jiang T Y, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504. |
22 | Wang T, Wu Y, Shi L, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 2021, 12: 365. |
23 | Mandal J, Fu Y K, Overvig A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. |
24 | Dai D H, Yang J, Zou Y C, et al. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption[J]. Angewandte Chemie International Edition, 2021, 60(16): 8967-8975. |
25 | Shi J S, Yan N F, Cui H M, et al. Nitrogen doped hierarchically porous carbon derived from glucosamine hydrochloride for CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 21: 444-449. |
26 | Li Z J, Xiao G, Yang Q Y, et al. Computational exploration of metal-organic frameworks for CO2/CH4 separation via temperature swing adsorption[J]. Chemical Engineering Science, 2014, 120: 59-66. |
27 | Sun Y L, Ji Y T, Javed M, et al. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling[J]. Advanced Materials Technologies, 2022, 7(3): 2100803. |
28 | Zeyghami M, Goswami D Y, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 115-128. |
29 | Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
30 | Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. |
31 | Li T, Zhai Y, He S M, et al.A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. |
32 | Wang Z, Goyal N, Liu L Y, et al. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases[J]. Chemical Engineering Journal, 2020, 396: 125376. |
33 | Mao S H, Chen X D, Li J H, et al. Self‐sacrifice template fabrication of graphene‐like nitrogen‐doped porous carbon nanosheets for applications in lithium‐ion batteries and oxygen reduction reaction[J]. Energy Technology, 2021, 9(12): 2100666. |
34 | Ghosh A, Razzino C D A, Dasgupta A, et al. Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene[J]. Carbon, 2019, 145: 175-186. |
35 | Peng A Z, Qi S C, Liu X, et al. Fabrication of N-doped porous carbons for enhanced CO2 capture: rational design of an ammoniated polymer precursor[J]. Chemical Engineering Journal,2019, 369: 170-179. |
36 | Sevilla M, Valle‐Vigón P, Fuertes A B. N‐doped polypyrrole‐based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787. |
37 | Kishibayev K K, Serafin J, Tokpayev R R, et al. Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106798. |
38 | Kongnoo A, Intharapat P, Worathanakul P, et al. Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures[J]. Journal of Environmental Chemical Engineering, 2016, 4: 73-81. |
39 | Liu X, Qi S C, Peng A Z, et al. Foaming effect of a polymer precursor with a low N content on fabrication of N-doped porous carbons for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 11013-11021. |
40 | Wei H R, Deng S B, Hu B Y, et al. Granular bamboo‐derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores[J]. ChemSusChem, 2012, 5(12): 2354-2360. |
41 | Zhang Z H, Schott J A, Liu M M, et al. Prediction of carbon dioxide adsorption via deep learning[J]. Angewandte Chemie International Edition, 2019, 58(1): 259-263. |
42 | Wilson P, Vijayan S, Prabhakaran K. Nitrogen doped microporous carbon by ZnCl2 activation of protein[J]. Materials Research Express, 2017, 4(9): 095602. |
43 | Bing X F, Wei Y J, Wang M, et al. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. Journal of Colloid and Interface Science, 2017, 488: 207-217. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||