化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4194-4206.DOI: 10.11949/0438-1157.20220437
陈健鑫1(), 朱瑞杰2, 盛楠1, 朱春宇1(), 饶中浩3
收稿日期:
2022-03-28
修回日期:
2022-06-15
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
朱春宇
作者简介:
陈健鑫(1995—),男,硕士研究生,15505167045@163.com
基金资助:
Jianxin CHEN1(), Ruijie ZHU2, Nan SHENG1, Chunyu ZHU1(), Zhonghao RAO3
Received:
2022-03-28
Revised:
2022-06-15
Online:
2022-09-05
Published:
2022-10-09
Contact:
Chunyu ZHU
摘要:
以棉纤维素为原料,采用硝酸盐、尿素、纤维素共混后热裂解的方法制备分级多孔炭HPC样品,通过改变煅烧温度和KOH活化处理对多孔炭比表面积及孔结构进行调控。对比三个不同温度煅烧活化处理后样品的循环伏安曲线、恒电流充放电曲线、比容量等电化学参数,结果表明,4AC@HPC800样品作为超级电容器工作电极具有优良的电化学性能,其比表面积高达2433.8 m2·g-1,在1 A·g-1的电流密度下比容量高达234.7 F·g-1,在大电流密度10 A·g-1时依然有207.6 F·g-1的比容量,具有良好的倍率性能;电极在2 A·g-1的电流密度下循环10000次后依然有196.1 F·g-1的比容量,表明其具有长时工作的特性。
中图分类号:
陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206.
Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance[J]. CIESC Journal, 2022, 73(9): 4194-4206.
试剂 | 规格 | 生产厂家 |
---|---|---|
脱脂棉毡 | 医用级 | 日本铃兰株式会社 |
六水合硝酸镁 | AR(≥99%) | 国药集团化学试剂有限公司 |
尿素 | AR(≥99%) | 上海阿拉丁生化科技股份有限公司 |
氢氧化钾 | AR(≥85%) | 国药集团化学试剂有限公司 |
聚四氟乙烯 | 60%(质量)分散液 | 上海阿拉丁生化科技股份有限公司 |
表1 实验试剂及原料
Table 1 Reagents and raw materials
试剂 | 规格 | 生产厂家 |
---|---|---|
脱脂棉毡 | 医用级 | 日本铃兰株式会社 |
六水合硝酸镁 | AR(≥99%) | 国药集团化学试剂有限公司 |
尿素 | AR(≥99%) | 上海阿拉丁生化科技股份有限公司 |
氢氧化钾 | AR(≥85%) | 国药集团化学试剂有限公司 |
聚四氟乙烯 | 60%(质量)分散液 | 上海阿拉丁生化科技股份有限公司 |
图4 煅烧温度与KOH活化对氮气等温吸脱附曲线与在NLDFT方法下的孔径分布的影响
Fig.4 The influence of calcination temperature and KOH activation on N2 isothermal absorption/desorption curves and pore size distribution under NLDFT method
样品 | BET SSA/(m2·g-1) | atotal/(m2·g-1) | aex/(m2·g-1) | amicro/(m2·g-1) | V0.95/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso/(cm3·g-1) |
---|---|---|---|---|---|---|---|
HPC1000 | 636.8 | 620.0 | 322.5 | 297.5 | 0.89 | 0.25 | 0.64 |
HPC900 | 828.7 | 825 | 507.9 | 317.1 | 1.03 | 0.26 | 0.77 |
HPC800 | 998.7 | 953.2 | 545.7 | 407.5 | 1.05 | 0.31 | 0.74 |
4AC@HPC1000 | 1223.7 | 1166.2 | 543.4 | 622.8 | 1.05 | 0.46 | 0.59 |
4AC@HPC900 | 2097.4 | 2050.4 | 968.0 | 1082.4 | 1.08 | 0.72 | 0.36 |
4AC@HPC800 | 2433.8 | 2429.0 | 1070.1 | 1358.9 | 1.10 | 0.78 | 0.32 |
表2 BET比表面积及孔容积特征
Table 2 BET specific surface area and pore volume
样品 | BET SSA/(m2·g-1) | atotal/(m2·g-1) | aex/(m2·g-1) | amicro/(m2·g-1) | V0.95/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso/(cm3·g-1) |
---|---|---|---|---|---|---|---|
HPC1000 | 636.8 | 620.0 | 322.5 | 297.5 | 0.89 | 0.25 | 0.64 |
HPC900 | 828.7 | 825 | 507.9 | 317.1 | 1.03 | 0.26 | 0.77 |
HPC800 | 998.7 | 953.2 | 545.7 | 407.5 | 1.05 | 0.31 | 0.74 |
4AC@HPC1000 | 1223.7 | 1166.2 | 543.4 | 622.8 | 1.05 | 0.46 | 0.59 |
4AC@HPC900 | 2097.4 | 2050.4 | 968.0 | 1082.4 | 1.08 | 0.72 | 0.36 |
4AC@HPC800 | 2433.8 | 2429.0 | 1070.1 | 1358.9 | 1.10 | 0.78 | 0.32 |
图5 二电极测试在不同煅烧温度时:样品的循环伏安曲线[(a)、 (c)、 (e)]; 样品的恒电流充放电曲线[(b)、 (d)、 (f)]
Fig.5 Two electrode test at different calcination temperatures: cyclic voltammetry curves of samples [(a)、 (c)、 (e)]; constant current charge-discharge curves of samples [(b)、 (d)、 (f)]
图6 活化前样品的循环特性以及在高扫速、大电流密度下的性能比较
Fig.6 The cyclic characteristics of samples before activation and the performance comparison under high sweep speed and high current density
图7 活化后(KOH与粉体炭比例1∶4):样品的循环伏安曲线[(a)、 (c)、 (e)]; 样品的恒电流充放电曲线[(b)、 (d)、 (f)]
Fig.7 After the activation (the ratio of KOH to carbon is 1∶4): cyclic voltammetry curves of samples [(a)、 (c)、 (e)]; constant current charge-discharge curves of samples [(b)、 (d)、 (f)]
图8 活化后样品的循环特性以及在高扫速、大电流密度下的性能比较
Fig.8 The cyclic characteristics of sample after activation and the performance comparison under high sweep speed and high current density
活性炭的生物质来源 | 电解液 | 比表面积 / (m2·g-1) | 最大比容量 / (F·g-1) |
---|---|---|---|
荷秆[ | 6 mol·L-1 KOH | 1022 | 248.5 |
花生壳[ | 1 mol·L-1 Na2SO4 | 890 | 239.88 |
米糠[ | 3 mol·L-1 KCl | 1886 | 210 |
玉米壳[ | 6 mol·L-1 KOH | 2349.89 | 140 |
废报纸[ | 6 mol·L-1 KOH | 416 | 180 |
蔗渣[ | 1 mol·L-1 H2SO4 | 2871 | 300 |
玉米秸秆[ | H2SO4/PVA | 1228 | 125 |
梧桐枯叶[ | 3 mol·L-1 KOH | 1639.8 | 266 |
紫荆花[ | 1 mol·L-1 KOH | 633.43 | 268 |
医用脱脂棉(本研究) | 6 mol·L-1 KOH | 2433.8 | 283.3 |
表3 对比不同生物质源和电解质下活性炭的比表面积和比容量
Table 3 Comparison of specific surface area and specific capacitance of various activated carbons derived from different biomass sources with different electrolytes
活性炭的生物质来源 | 电解液 | 比表面积 / (m2·g-1) | 最大比容量 / (F·g-1) |
---|---|---|---|
荷秆[ | 6 mol·L-1 KOH | 1022 | 248.5 |
花生壳[ | 1 mol·L-1 Na2SO4 | 890 | 239.88 |
米糠[ | 3 mol·L-1 KCl | 1886 | 210 |
玉米壳[ | 6 mol·L-1 KOH | 2349.89 | 140 |
废报纸[ | 6 mol·L-1 KOH | 416 | 180 |
蔗渣[ | 1 mol·L-1 H2SO4 | 2871 | 300 |
玉米秸秆[ | H2SO4/PVA | 1228 | 125 |
梧桐枯叶[ | 3 mol·L-1 KOH | 1639.8 | 266 |
紫荆花[ | 1 mol·L-1 KOH | 633.43 | 268 |
医用脱脂棉(本研究) | 6 mol·L-1 KOH | 2433.8 | 283.3 |
1 | Poonam, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
2 | Ramasahayam S K, Nasini U B, Shaikh A U, et al. Novel tannin-based Si, P co-doped carbon for supercapacitor applications[J]. Journal of Power Sources, 2015, 275: 835-844. |
3 | Wang Y M, Wu X L, Han Y Q, et al. Flexible supercapacitor: overview and outlooks[J]. Journal of Energy Storage, 2021, 42: 103053. |
4 | Yang H Z. A comparative study of supercapacitor capacitance characterization methods[J]. Journal of Energy Storage, 2020, 29: 101316. |
5 | Liu X H, Zhou L, Zhao Y Q, et al. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10280-10287. |
6 | Lee K S, Seo Y J, Jeong H T. Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor[J]. Carbon Letters, 2021, 31(5): 1041-1049. |
7 | Lee S H, Jin B S, Kim H S, et al. A novel battery-supercapacitor system with extraordinarily high performance[J]. International Journal of Hydrogen Energy, 2019, 44(5): 3013-3020. |
8 | Lv S, Ma L Y, Shen X Y, et al. One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors[J]. Microporous and Mesoporous Materials, 2021, 310: 110670. |
9 | Zhou Y, Jin P, Zhou Y, et al. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites[J]. Scientific Reports, 2018, 8: 9005. |
10 | Lee S P, Ali G A M, Hegazy H H, et al. Optimizing reduced graphene oxide aerogel for a supercapacitor[J]. Energy & Fuels, 2021, 35(5): 4559-4569. |
11 | Malkova A N, Sipyagina N A, Gozhikova I O, et al. Electrochemical properties of carbon aerogel electrodes: dependence on synthesis temperature[J]. Molecules, 2019, 24(21): 3847. |
12 | Zhao H Y, Ran Q W, Li Y F, et al. Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode[J]. Journal of Materials Research and Technology, 2020, 9(4): 9422-9433. |
13 | Liang Q H, Ye L, Huang Z H, et al. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale, 2014, 6(22): 13831-13837. |
14 | Ban C L, Xu Z Y, Wang D W, et al. Porous layered carbon with interconnected pore structure derived from reed membranes for supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10742-10750. |
15 | Dai C C, Wan J F, Shao J Q, et al. Hollow activated carbon with unique through-pore structure derived from reed straw for high-performance supercapacitors[J]. Materials Letters, 2017, 193: 279-282. |
16 | Nie Z G, Wang Y, Li X Y, et al. Heteroatom-doped hierarchical porous carbon from corn straw for high-performance supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103410. |
17 | Pan B L. Preparation and electrosorption desalination performance of peanut shell-based activated carbon and MoS2 [J]. International Journal of Electrochemical Science, 2020, 15: 1861-1880. |
18 | 周王帆, 陈新, 曹红亮, 等. 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7): 2918-2924. |
Zhou W F, Chen X, Cao H L, et al. Preparation of platanus leaf-based activated carbon and its application in supercapacitors[J]. CIESC Journal, 2017, 68(7): 2918-2924. | |
19 | 徐杰, 陈新, 王玲玲. 用过期切片面包制备环保超级电容器活性炭电极材料[J]. 化工学报, 2019, 70(9): 3582-3589. |
Xu J, Chen X, Wang L L. An environmentally friendly activated carbon supercapacitor electrode material preparation with expired sliced bread[J]. CIESC Journal, 2019, 70(9): 3582-3589. | |
20 | Blanco G C, De Castro Munhoz M G, Rodrigues A C, et al. Process of converting human hair into hollow carbon filament for electrochemical capacitor[J]. Matéria (Rio De Janeiro), 2021, 26(2): e12964. |
21 | Wang J. Nitrogen-phosphorus co-doped porous carbon based on peanut shell for surpercapactior[J]. International Journal of Electrochemical Science, 2018, 13: 6259-6271. |
22 | Bi H H, He X J, Zhang H F, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy, 2021, 170: 188-196. |
23 | Zhu C Y, Takata M, Aoki Y, et al. Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst[J]. Chemical Engineering Journal, 2018, 350: 278-289. |
24 | Kim C, Zhu C Y, Aoki Y, et al. Exothermically efficient exfoliation of biomass cellulose to value-added N-doped hierarchical porous carbon for oxygen reduction electrocatalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3047-3059. |
25 | Kim C, Zhu C Y, Aoki Y, et al. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors [J]. Electrochimica Acta, 2019, 314: 173-187. |
26 | Ren M, Zhang C Y, Wang Y L, et al. Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1482-1492. |
27 | Fu H H, Chen L, Gao H J, et al. Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors[J]. International Journal of Hydrogen Energy, 2020, 45(1): 443-451. |
28 | Zhang L, Yuan J, Su S Y, et al. Porous active carbon derived from lotus stalk as electrode material for high-performance supercapacitors [J]. Journal of Wood Chemistry and Technology, 2021, 41(1): 46-57. |
29 | Guo F Q, Jiang X C, Li X L, et al. Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(1): 914-925. |
30 | Guo Y P, Qi J R, Jiang Y Q, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics, 2003, 80(3): 704-709. |
31 | Usha Rani M, Nanaji K, Rao T N, et al. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors[J]. Journal of Power Sources, 2020, 471: 228387. |
32 | Kalpana D, Cho S H, Lee S B, et al. Recycled waste paper—a new source of raw material for electric double-layer capacitors[J]. Journal of Power Sources, 2009, 190(2): 587-591. |
33 | Rufford T E, Hulicova-Jurcakova D, Khosla K, et al. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse[J]. Journal of Power Sources, 2010, 195(3): 912-918. |
34 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600. | |
35 | Sivachidambaram M, Vijaya J J, Kennedy L J, et al. Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications[J]. New Journal of Chemistry, 2017, 41(10): 3939-3949. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[10] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[14] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[15] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||