化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1817-1825.doi: 10.11949/0438-1157.20211852

• 材料化学工程与纳米技术 • 上一篇    下一篇

定向生物质多孔碳复合相变材料的制备及其热性能研究

陈子禾(),赵呈志,冒文莉,盛楠,朱春宇()   

  1. 中国矿业大学低碳能源与动力工程学院,江苏 徐州 221116
  • 收稿日期:2021-12-30 修回日期:2022-02-14 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 朱春宇 E-mail:1013854522@qq.com;zcyls@cumt.edu.cn
  • 作者简介:陈子禾(1997—),男,硕士研究生,1013854522@qq.com
  • 基金资助:
    国家自然科学基金项目(52006238);江苏省自然科学基金项目(BK20200635);中央高校基本科研业务费专项资金项目(2020ZDPYMS24);江苏省研究生科研实践创新计划项目(SJCX21_1014)

Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon

Zihe CHEN(),Chengzhi ZHAO,Wenli MAO,Nan SHENG,Chunyu ZHU()   

  1. School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2021-12-30 Revised:2022-02-14 Published:2022-04-05 Online:2022-04-25
  • Contact: Chunyu ZHU E-mail:1013854522@qq.com;zcyls@cumt.edu.cn

摘要:

针对石蜡热导率低以及易泄漏等问题,以生物质木头多孔碳作为导热填料骨架,利用壳聚糖改性木头多孔碳在其竖向孔道中生长碳薄片形成分级多孔网络结构,并与石蜡复合制成定形复合相变材料(PCC)。结果表明,由于分级多孔网络骨架的引入,PCC的定形效果好,无明显泄漏,其相变焓值为126.9 J/g,经100次熔化凝固循环测试,其相变温度和焓值均无明显变化,具有良好的循环稳定性。PCC的导热性能具有较大提高,且呈现明显的各向导热异性,平面外和平面内热导率分别为0.67和0.41 W/(m·K)。此外,通过模拟太阳光进行光热实验,发现PCC具有良好的光热转换性能。本复合相变材料在储热以及热管理领域具有应用前景。

关键词: 复合材料, 生物质多孔碳, 相变储热, 传热, 太阳能

Abstract:

The low thermal conductivity and poor shape-stability of organic paraffin as phase change material have limited their applications. In order to improve the thermal conductivity and anti-leakage performance of paraffin, wood was modified by chitosan and carbonized at high temperature to prepare hierarchical porous carbon skeleton, which can not only firmly adsorb paraffin but also greatly improve the thermal conductivity of phase change composite (PCC). The morphology, phase change cycling stability, thermal conductivity and photothermal conversion performance were tested. The results show that with the introduction of multi-scaled porous structure, PCCs have good shape-stability without obvious leakage. The phase change enthalpy of the PCC is 126.9 J/g. The phase-transition temperature and enthalpy of the PCC have no obvious change over the 100 cycles of melting and solidification, indicating that the PCC has good cyclic stability. The thermal conductivity of PCC is also greatly improved and presents obvious anisotropic thermal conductivity. The out-of-plane and in-plane thermal conductivity of PCC are 0.67 and 0.41 W/(m·K), respectively. The great improvement of the out-of-plane thermal conductivity is conducive to improve the thermal management application of PCC. In addition, it is also found that PCC has good photothermal conversion performance. The composite phase change materials developed in this paper have application prospects in the fields of heat storage and thermal management.

Key words: composites, biomass porous carbon, phase change thermal storage, heat transfer, solar energy

中图分类号: 

  • TK 02

图1

壳聚糖改性木头碳骨架及其定形复合相变材料的制备流程"

表1

样品命名及实验条件"

填料骨架命名石蜡复合物实验条件
无填料Paraffin石蜡空白样品
C-1200C/P-1200未改性,1200℃热处理
Ch/C-1200Ch/C/P-1200壳聚糖改性,1200℃热处理

图2

1200℃热处理后木头碳骨架改性前后的XRD谱图"

图3

木头碳及其相变复合物的SEM形貌图"

图4

样品DSC数据分析"

表2

复合相变材料熔化和凝固过程的相变温度及焓值"

样品熔化过程凝固过程
Tmp/℃ΔHm /(J/g)Tsp/℃ΔHs/(J/g)
Paraffin58.0203.949.8204.0
C/P-120058.4130.248.9129.3
Ch/C/P-120059.1126.948.5126.6

图5

纯石蜡以及样品Ch/C/P-1200循环前后的红外光谱图"

图6

相变复合材料泄漏实验测试"

图7

泄漏实验前后样品质量变化"

图8

复合相变材料的热导率"

图9

复合相变材料样品的红外热像图"

图10

光热转换实验分析 (模拟1.2个太阳光光强)"

10 Yang L, Yao Y, Zhang D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464-472.
11 Tong X, Li N Q, Zeng M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422.
12 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418.
Hu D H, Xu X Y, Lin K, et al. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418.
13 Zhou Y, Sun W C, Ling Z Y, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806.
14 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6): 1723-1728.
Hua W S, Zhang X L, Luo X X, et al. Experimental study of nanometal-paraffin composite phase change heat storage material[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1723-1728.
15 Sheng N, Dong K X, Zhu C Y, et al. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler[J]. Materials Chemistry and Physics, 2019, 229: 87-91.
16 Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028.
17 Maher H, Rocky K A, Bassiouny R, et al. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications[J]. Thermal Science and Engineering Progress, 2021, 22: 100797.
18 Yuan W Z, Yang X Q, Zhang G Q, et al. A thermal conductive composite phase change material with enhanced volume resistivity by introducing silicon carbide for battery thermal management[J]. Applied Thermal Engineering, 2018, 144: 551-557.
19 Wu S, Li T X, Yan T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102: 733-744.
1 Lin Y X, Jia Y T, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742.
2 Feng D L, Feng Y H, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605.
20 Hu X P, Wu H, Lu X, et al. Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 478-491.
21 Chriaa I, Karkri M, Trigui A, et al. The performances of expanded graphite on the phase change materials composites for thermal energy storage[J]. Polymer, 2021, 212: 123128.
22 Zou D Q, Ma X F, Liu X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41.
23 Yu S, Jeong S G, Chung O, et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2014, 120: 549-554.
24 Yang J, Qi G Q, Tang L S, et al. Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage[J]. Journal of Materials Chemistry A, 2016, 4(24): 9625-9634.
25 Wu S Y, Chen Q Y, Chen D D, et al. Multiscale study of thermal conductivity of boron nitride nanosheets/paraffin thermal energy storage materials[J]. Journal of Energy Storage, 2021, 41: 102931.
26 Yang J, Li X F, Han S, et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability[J]. Journal of Materials Chemistry A, 2018, 6(14): 5880-5886.
27 Yang J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95.
28 Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865.
29 Palazzolo M A, Dourges M A, Magueresse A, et al. Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2453-2461.
30 Li B X, Liu T X, Hu L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380.
31 Xue G B, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057.
32 Zhu M W, Li Y J, Chen G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107.
33 Qian T T, Zhu S K, Wang H L, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2446-2458.
3 Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
4 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564.
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564.
5 Mohamed S A, Al-Sulaiman F A, Ibrahim N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089.
6 Alva G, Liu L K, Huang X, et al. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706.
7 Khan M M A, Saidur R, Al-Sulaiman F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 105-137.
8 Nofal M, Al-Hallaj S, Pan Y Y. Thermal management of lithium-ion battery cells using 3D printed phase change composites[J]. Applied Thermal Engineering, 2020, 171: 115126.
9 Arshad A, Jabbal M, Shi L, et al. Development of TiO2/RT-35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100865.
10 杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472.
[1] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[2] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[3] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[4] 董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
[5] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[6] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[7] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[8] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[9] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[10] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[11] 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110.
[12] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[13] 黄其, 章晓敏, 宓霄凌, 周楷, 钟英杰. 三角槽道低 Reynolds 数脉动流与柔性壁耦合特性研究[J]. 化工学报, 2022, 73(5): 1964-1973.
[14] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[15] 黄志豪, 李光熙, 唐桂华, 李小龙, 范元鸿. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!