1 |
Zhang L L, Zhao X. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
|
2 |
Balducci A, Dugas R, Taberna P L, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte[J]. Journal of Power Sources, 2007, 165(2): 922-927.
|
3 |
Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.
|
4 |
Kandalkar S, Dhawale D, Kim C K, et al. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals, 2010, 160(11/12): 1299-1302.
|
5 |
Brousse T, Bélanger D, Long J W. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A5189.
|
6 |
Wang T, Chen H C, Yu F, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors[J]. Energy Storage Materials, 2019, 16: 545-573.
|
7 |
Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chem. Soc. Rev., 2016, 45(21): 5925-5950.
|
8 |
Li B, Zheng M, Xue H, et al. High performance electrochemical capacitor materials focusing on nickel based materials[J]. Inorganic Chemistry Frontiers, 2016, 3(2): 175-202.
|
9 |
Chen X, Long C, Lin C, et al. Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors[J]. Electrochimica Acta, 2014, 137: 352-358.
|
10 |
Yao C, Su Y, Li Y, et al. Preparation and electrochemical properties of NiCo2O4/rGO composites[J]. International Journal of Electrochemical Science, 2021, 16(1): 150917.
|
11 |
Feng Q, Liu F, Yuan J, et al. Co-doped Ni(OH)2 ultrafine particles with high supercapacitor performance[J]. International Journal of Electrochemical Science, 2020, 15: 2863-2873.
|
12 |
Sethi M, Bhat D K. Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods[J]. Journal of Alloys and Compounds, 2019, 781: 1013-1020.
|
13 |
Chang J, Sun J, Xu C, et al. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors[J]. Nanoscale, 2012, 4(21): 6786-6791.
|
14 |
Wu S, Yun J M, Kim K H. Solvothermal synthesis of nickel-aluminum layered double hydroxide nanosheet arrays on nickel foam as binder-free electrodes for supercapacitors[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(6): 1933-1940.
|
15 |
Liu M C, Kong L B, Lu C, et al. A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors[J]. ACS Applied Materials and Interfaces, 2012, 4(9): 4631-4636.
|
16 |
Matteucci M E, Hotze M A, Johnston K P, et al. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization[J]. Langmuir, 2006, 22(21): 8951-8959.
|
17 |
Yue X J, Luo Y, Chen Q Y, et al. Investigation of micromixing and precipitation process in a rotating packed bed reactor with PTFE packing[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 227-233.
|
18 |
Bałdyga J, Bourne J R. Turbulent Mixing and Chemical Reactions[M]. Chichester, UK: Wiley, 1999.
|
19 |
Chen J, Shao L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost[J]. China Particuology, 2003, 1(2): 64-69.
|
20 |
Elperin I. Heat and mass transfer in opposing currents[J]. Journal of Engineering Physics, 1961, 6(6): 62-68.
|
21 |
Zhang Q C, Cheng K P, Wen L X, et al. A study on the precipitating and aging processes of CuO/ZnO/Al2O3 catalysts synthesized in micro-impinging stream reactors[J]. RSC Advances, 2016, 6(40): 33611-33621.
|
22 |
Liu Z, Guo L, Huang T, et al. Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions[J]. Chemical Engineering Science, 2014, 119: 124-133.
|
23 |
Gu R, Cheng K, Wen L. Application of the engulfment model in assessing micromixing time of a micro-impinging stream reactor based on the determination of impinging zone with CFD[J]. Chemical Engineering Journal, 2021, 409: 128248.
|
24 |
Chen H, Wang J M, Pan T, et al. The structure and electrochemical performance of spherical Al-substituted α - N i ( O H ) 2 for alkaline rechargeable batteries[J]. Journal of Power Sources, 2005, 143(1/2): 243-255.
|
25 |
Aghazadeh M, Ghaemi M, Sabour B, et al. Electrochemical preparation of α - N i ( O H ) 2 ultrafine nanoparticles for high-performance supercapacitors[J]. Journal of Solid State Electrochemistry, 2014, 18(6): 1569-1584.
|
26 |
Yan J, Sun W, Wei T, et al. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets[J]. Journal of Materials Chemistry, 2012, 22(23): 11494-11502.
|
27 |
Yang J, Yu C, Fan X, et al. Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances[J]. Journal of Materials Chemistry A, 2013, 1(6): 1963-1968.
|
28 |
Che W, Wei M, Sang Z, et al. Perovskite LaNiO3- δ oxide as an anion-intercalated pseudocapacitor electrode[J]. Journal of Alloys and Compounds, 2018, 731: 381-388.
|
29 |
Liang K, Wang N, Zhou M, et al. Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(34): 9730-9736.
|
30 |
Zhang Q C, Tian L L, Wu Y C, et al. Fast coprecipitation of nickel-cobalt oxide in a micro-impinging stream reactor for the construction of high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2019, 792: 314-327.
|