化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3287-3297.DOI: 10.11949/0438-1157.20220391
• 材料化学工程与纳米技术 • 上一篇
收稿日期:
2022-03-20
修回日期:
2022-05-15
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
曲慧颖
作者简介:
刘学安(1995—),男,硕士研究生,基金资助:
Xue’an LIU(),Liyi TANG,Jian QIN,Dajiang TANG,Zhangfa TONG,Huiying QU()
Received:
2022-03-20
Revised:
2022-05-15
Online:
2022-07-05
Published:
2022-08-01
Contact:
Huiying QU
摘要:
金属-有机骨架(MOFs)衍生碳材料具有丰富的孔道结构和超高的比表面积,在超级电容器等储能领域展现出巨大潜力。以环保型ZnO纳米球为模板,通过水热法制备核壳结构ZnO@Ni/Co-ZIF-8前体。将其在四种温度(700、800、900、950℃)下热解,获得不同形貌的Ni、Co及N掺杂的MOFs衍生碳材料Ni/Co-CN,并探究了煅烧温度对其储能性能的影响。结果表明,随着煅烧温度升高,Ni/Co-CN逐渐由多孔碳变为碳纳米管桥连多孔碳结构。当热解温度为900℃时,Ni/Co-CN-900的比电容最大。在1 mol/L的KOH电解液中对其进行循环伏安测试,曲线对称性良好,表明其具有优异的电化学可逆性。通过计算该过程电荷存储的电容贡献和扩散贡献占比可知,Ni/Co-CN的储能主要来自多孔碳的双电层吸附,少量来自N掺杂导致的法拉第反应。在0.5 A/g的电流密度下,Ni/Co-CN-900的比电容高达273.5 F/g。在10.0 A/g的电流密度下进行5000次恒流充放电后,其比电容保持率高达93.8%,展现出良好的电化学性能。
中图分类号:
刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297.
Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors[J]. CIESC Journal, 2022, 73(7): 3287-3297.
Samples | Dap/nm | SBET /(m2/g) | Smic /(m2/g) | Vt /(cm3/g) | Vmic /(cm3/g) | (Vmic/Vt) /% |
---|---|---|---|---|---|---|
Ni/Co-CN-700 | 4.29 | 367 | 270 | 0.39 | 0.14 | 36 |
Ni/Co-CN-800 | 5.52 | 411 | 304 | 0.57 | 0.16 | 28 |
Ni/Co-CN-900 | 5.92 | 827 | 512 | 1.23 | 0.26 | 21 |
Ni/Co-CN-950 | 5.23 | 532 | 424 | 0.70 | 0.22 | 31 |
表1 Ni/Co-CN样品的孔结构参数
Table 1 The pore structure parameters of Ni/Co-CN materials
Samples | Dap/nm | SBET /(m2/g) | Smic /(m2/g) | Vt /(cm3/g) | Vmic /(cm3/g) | (Vmic/Vt) /% |
---|---|---|---|---|---|---|
Ni/Co-CN-700 | 4.29 | 367 | 270 | 0.39 | 0.14 | 36 |
Ni/Co-CN-800 | 5.52 | 411 | 304 | 0.57 | 0.16 | 28 |
Ni/Co-CN-900 | 5.92 | 827 | 512 | 1.23 | 0.26 | 21 |
Ni/Co-CN-950 | 5.23 | 532 | 424 | 0.70 | 0.22 | 31 |
Samples | Atomic fraction of N/% | Concentration of nitrogen-containing functional groups/% | |||
---|---|---|---|---|---|
N-O | N-Q | N-5 | N-6 | ||
Ni/Co-CN-700 | 10.4 | 0 | 9.9 | 36.1 | 54.0 |
Ni/Co-CN-800 | 6.3 | 6.8 | 13.6 | 32.2 | 47.4 |
Ni/Co-CN-900 | 4.8 | 6.0 | 15.6 | 33.4 | 44.9 |
Ni/Co-CN-950 | 1.8 | 6.8 | 14.7 | 54.2 | 24.3 |
表2 Ni/Co-CN样品表面的含氮量和含氮官能团占比
Table 2 Concentrations of nitrogen atoms and nitrogen-containing functional groups on the surface of Ni/Co-CN
Samples | Atomic fraction of N/% | Concentration of nitrogen-containing functional groups/% | |||
---|---|---|---|---|---|
N-O | N-Q | N-5 | N-6 | ||
Ni/Co-CN-700 | 10.4 | 0 | 9.9 | 36.1 | 54.0 |
Ni/Co-CN-800 | 6.3 | 6.8 | 13.6 | 32.2 | 47.4 |
Ni/Co-CN-900 | 4.8 | 6.0 | 15.6 | 33.4 | 44.9 |
Ni/Co-CN-950 | 1.8 | 6.8 | 14.7 | 54.2 | 24.3 |
Samples | Capacitive contribution/% | ||||
---|---|---|---|---|---|
20 mV/s | 50 mV/s | 100 mV/s | 200 mV/s | 500 mV/s | |
Ni/Co-CN-700 | 24.8 | 30.7 | 36.4 | 45.0 | 61.0 |
Ni/Co-CN-800 | 43.5 | 48.5 | 53.6 | 61.1 | 78.3 |
Ni/Co-CN-900 | 46.5 | 51.6 | 56.7 | 64.0 | 80.3 |
Ni/Co-CN-950 | 42.5 | 46.7 | 51.2 | 59.7 | 77.2 |
表3 Ni/Co-CN-700、Ni/Co-CN-800、Ni/Co-CN-900和Ni/Co-CN-950在不同扫描速率下的电容贡献率
Table 3 The capacitance contribution of Ni/Co-CN-700, Ni/Co-CN-800, Ni/Co-CN-900 and Ni/Co-CN-950 at different scan rates
Samples | Capacitive contribution/% | ||||
---|---|---|---|---|---|
20 mV/s | 50 mV/s | 100 mV/s | 200 mV/s | 500 mV/s | |
Ni/Co-CN-700 | 24.8 | 30.7 | 36.4 | 45.0 | 61.0 |
Ni/Co-CN-800 | 43.5 | 48.5 | 53.6 | 61.1 | 78.3 |
Ni/Co-CN-900 | 46.5 | 51.6 | 56.7 | 64.0 | 80.3 |
Ni/Co-CN-950 | 42.5 | 46.7 | 51.2 | 59.7 | 77.2 |
Samples | Specific capacitance/(F/g) | Ref. |
---|---|---|
Ni/Co-CN-900 | 273.5 (0.5 A/g) | this work |
PB-15 | 199.0 (0.5 A/g) | [ |
ET-rGO | 124.0 (0.1 A/g) | [ |
N-HPC-900 | 128.5 (0.2 A/g) | [ |
ZM-K | 176.4 (0.2 A/g) | [ |
NCM | 214.8 (0.2 A/g) | [ |
表4 不同碳电极材料的比电容
Table 4 The specific capacitance of different carbon electrode materials
Samples | Specific capacitance/(F/g) | Ref. |
---|---|---|
Ni/Co-CN-900 | 273.5 (0.5 A/g) | this work |
PB-15 | 199.0 (0.5 A/g) | [ |
ET-rGO | 124.0 (0.1 A/g) | [ |
N-HPC-900 | 128.5 (0.2 A/g) | [ |
ZM-K | 176.4 (0.2 A/g) | [ |
NCM | 214.8 (0.2 A/g) | [ |
Samples | Rs/Ω | Rct/Ω |
---|---|---|
Ni/Co-CN-700 | 1.53 | 1.64 |
Ni/Co-CN-800 | 1.66 | 0.42 |
Ni/Co-CN-900 | 1.35 | 0.33 |
Ni/Co-CN-950 | 1.44 | 0.57 |
表5 Ni/Co-CN-700、Ni/Co-CN-800、Ni/Co-CN-900和Ni/Co-CN-950的等效串联电阻Rs和传荷电阻Rct
Table 5 The equivalent series resistance Rs and charge transfer resistance Rctof Ni/Co-CN-700, Ni/Co-CN-800, Ni/Co-CN-900 and Ni/Co-CN-950
Samples | Rs/Ω | Rct/Ω |
---|---|---|
Ni/Co-CN-700 | 1.53 | 1.64 |
Ni/Co-CN-800 | 1.66 | 0.42 |
Ni/Co-CN-900 | 1.35 | 0.33 |
Ni/Co-CN-950 | 1.44 | 0.57 |
1 | Huang A, El-Kady M F, Chang X, et al. Facile fabrication of multivalent VO x /graphene nanocomposite electrodes for high-energy-density symmetric supercapacitors[J]. Advanced Energy Materials, 2021, 11(26): 2100768. |
2 | Zhang G C, Feng M, Li Q, et al. High energy density in combination with high cycling stability in hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2022, 14(2): 2674-2682. |
3 | Wu Y, Cao J P, Zhuang Q Q, et al. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte[J]. Electrochimica Acta, 2021, 371: 137825. |
4 | Kazazi M. Effect of electrodeposition current density on the morphological and pseudo capacitance characteristics of porous nano-spherical MnO2 electrode[J]. Ceramicas International, 2018, 44(9): 10863-10870. |
5 | Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(35): 19649-19658. |
6 | Zhang M J, Zhang Z S, Li F, et al. Reduced porous carbon/N-doped graphene nanocomposites for accelerated conversion and effective immobilization of lithium polysulfides in lithium-sulfur batteries[J]. Electrochimica Acta, 2021, 397: 139268. |
7 | Zhou W, Jiang J, Wu H, et al. Facile preparation of binary salt hydrates/carbon nanotube composite for thermal storage materials with enhanced structural stability[J]. ACS Applied Energy Materials, 2021, 4(5): 4561-4569. |
8 | Chae J S, Kang W, Roh K C. sp2-sp3 hybrid porous carbon materials applied for supercapacitors[J]. Energies, 2021, 14(19): 5990-5999. |
9 | Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937. |
10 | Razaq R, Zhang N N, Xin Y, et al. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries[J]. EcoMat, 2020, 2(2): 21805112. |
11 | Abirami R, Kabilan R, Nagaraju P, et al. Enhanced electrochemical performance of Mn3O4/multiwalled carbon nanotube nanocomposite for supercapacitor applications[J]. Journal of Electronic Materials, 2021, 50(11): 6467-6474. |
12 | Zhu S, Göbel M, Formanek P, et al. Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, N-doped hierarchical porous carbon[J]. Journal of Materials Chemistry A, 2021, 9 (24): 14052-14063. |
13 | Cheng J, Liu Y, Zhang X, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 419:129649. |
14 | Zheng K, Tan H, Wang L, et al. Vertically oriented Cu2+1O@Cu-MOFs hybrid clusters for high-performance electrochemical capacitors[J]. Advanced Materials Interfaces, 2021, 8(10): 2002145. |
15 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J].物理化学学报, 2020, 36(2): 1903043. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043. | |
16 | Bi H, He X, Zhang H, et al. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance[J]. Renewable Energy, 2021, 170: 188-196. |
17 | Ye C, Xu L. Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor[J]. Composites Part B: Engineering, 2021, 225: 109256. |
18 | Cordero-Lanzac T, Rosas J M, García-Mateos F J, et al. Role of different nitrogen functionalities on the electrochemical performance of activated carbons[J]. Carbon, 2018, 126: 65-76. |
19 | Huang Y J, Luo C, Zhang Q B, et al. Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor[J]. Journal of Energy Chemistry, 2021, 61(10): 489-496. |
20 | Bowen J, Seyedsina H, Hong Q C, et al. MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors[J]. Applied Materials Today, 2019, 17: 227-235. |
21 | Xiang A Q, Xie S, Pan F, et al. Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors[J]. Chinese Chemical Letters, 2020, 32(2): 830-833. |
22 | Yang C, Yun S, Shi J, et al. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: a hybrid experimental-computational exploration[J]. Chemical Engineering Journal, 2021, 419: 129636. |
23 | Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 8(8): 1-8. |
24 | Xing B L, Zhang C T, Liu Q R, et al. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 91-102. |
25 | 宗爽, 刘歆颖, 陈爱兵. 金属有机框架衍生的0维材料在超级电容器中的应用[J]. 化工学报, 2020, 71(6): 2612-2627. |
Zong S, Liu X Y, Chen A B. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors[J]. CIESC Journal, 2020, 71(6): 2612-2627. | |
26 | Koo W T, Jang J S, Kim I D. Metal-organic frameworks for chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963. |
27 | Huang L Q, Luo Z Y, Han W J, et al. Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites[J]. Nano Research, 2022, 15: 5769-5774. |
28 | Yun Y, Fang Y, Fu W, et al. Exploiting the fracture in metal-organic frameworks: a general strategy for bifunctional atom-precise nanocluster/ZIF-8(300℃) composites[J]. Small, 2022, 18(17): e2107459. |
29 | Zhang J, Tan Y, Song W J. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review[J]. Microchimica Acta, 2020, 187(4): 1-23. |
30 | Lei Z W, Deng Y H, Wang C Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3258-3263. |
31 | Huang K, Rong C, Zhang W, et al. MOF-assisted synthesis of Ni, Co, Zn, and N multidoped porous carbon as highly efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Materials Today Energy, 2021, 19: 100579-100589. |
32 | Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon[J]. Small, 2022, 18(12): e2107113. |
33 | 刘宇喆, 李成才, 李琳, 等. 活性炭的微结构与超级电容器性能的构效关系[J].化工学报, 2022, 73(4): 1807-1816. |
Liu Y Z, Li C C, Li L, et al. Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. CIESC Journal, 2022, 73(4): 1807-1816. | |
34 | Liu S, Zhou J, Song H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: superior performance and new insight into the roles of N configurations in Na-ion storage[J]. Small, 2018, 14(12): e1703548. |
35 | Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery[J]. Chemical Engineering Journal, 2022, 432: 134321. |
36 | Zhang M, Chen M, Reddeppa N, et al. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes[J]. Nanoscale, 2018, 10(14): 6549-6557. |
37 | Zhang X Z, Raj D V, Zhou X F, et al. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors[J]. Journal of Power Sources, 2018, 382: 95-100. |
38 | Shang Z, An X Y, Liu L Q, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107. |
39 | Zhao B, Song C, Wang F, et al. Facile synthesis of microporous N-doped carbon material and its application in supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 306: 110483. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[3] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[4] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[5] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[6] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
[7] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[8] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[9] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[10] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[11] | 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269. |
[12] | 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
[13] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[14] | 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738. |
[15] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||