• •
收稿日期:2025-09-20
修回日期:2025-10-28
出版日期:2025-11-07
通讯作者:
王军锋
作者简介:左磊(1994—),男,博士,实验师,zuolei@just.edu.cn
基金资助:
Lei ZUO1,2(
), Junfeng WANG2,3(
), Daorui WANG2
Received:2025-09-20
Revised:2025-10-28
Online:2025-11-07
Contact:
Junfeng WANG
摘要:
搭建了荷电燃料液滴燃烧实验装置,通过可视化手段研究荷电乙醇-生物柴油液滴在燃烧过程中的破碎特性。结果表明,荷电乙醇-生物柴油液滴的燃烧过程由热膨胀阶段、气泡发展阶段、电致变形阶段和准稳态阶段组成,存在气泡发展和锥射流引起的液滴破碎模式。对于气泡发展引起的液滴破碎,液滴带电会增大E10(10vol%乙醇+90vol%生物柴油)液滴的破碎延迟期,减小E30(30vol%乙醇+70vol%生物柴油)液滴的破碎延迟期,基本不改变E50(50vol%乙醇+50vol%生物柴油)液滴的破碎延迟期;除了3 kV工况,液滴破碎强度基本随着电压增大而减小;液滴带电会减小E10液滴的子液滴尺寸,而E30和E50液滴的子液滴尺寸与电压间的规律不明显。锥射流产生的子液滴尺寸小于气泡发展产生的子液滴尺寸。
中图分类号:
左磊, 王军锋, 王道睿. 荷电乙醇-生物柴油液滴在燃烧过程中的破碎特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251057.
Lei ZUO, Junfeng WANG, Daorui WANG. Study on breakup characteristics of charged ethanol-biodiesel droplets in combustion[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251057.
燃料 标识 | 配制方案 | 物性参数 | |||||
|---|---|---|---|---|---|---|---|
密度/ (kg/m3) | 表面张力/ (N/m) | 动力黏度/ mPa∙s | 沸点/ ℃ | 介电常数 | 电导率/ (S/m) | ||
| E10 | 10vol%乙醇+90vol%生物柴油 | 862 | 0.033 | 4.64 | 305 | 4.88 | 5.0 × 10-6 |
| E30 | 30vol%乙醇+70vol%生物柴油 | 847 | 0.030 | 3.82 | 254 | 9.19 | 1.5 × 10-5 |
| E50 | 50vol%乙醇+50vol%生物柴油 | 831 | 0.028 | 3.01 | 204 | 13.51 | 2.5 × 10-5 |
表1 乙醇-生物柴油掺混燃料的配制方案及物性参数
Table 1 Preparation schemes and physical properties of ethanol-biodiesel fuel blends
燃料 标识 | 配制方案 | 物性参数 | |||||
|---|---|---|---|---|---|---|---|
密度/ (kg/m3) | 表面张力/ (N/m) | 动力黏度/ mPa∙s | 沸点/ ℃ | 介电常数 | 电导率/ (S/m) | ||
| E10 | 10vol%乙醇+90vol%生物柴油 | 862 | 0.033 | 4.64 | 305 | 4.88 | 5.0 × 10-6 |
| E30 | 30vol%乙醇+70vol%生物柴油 | 847 | 0.030 | 3.82 | 254 | 9.19 | 1.5 × 10-5 |
| E50 | 50vol%乙醇+50vol%生物柴油 | 831 | 0.028 | 3.01 | 204 | 13.51 | 2.5 × 10-5 |
| [1] | Adu-Mensah D, Mei D Q, Zuo L, et al. A review on partial hydrogenation of biodiesel and its influence on fuel properties[J]. Fuel, 2019, 251: 660-668. |
| [2] | 蔡文杰, 刘学渊, 陈彦林, 等. 农用拖拉机燃用生物柴油排放特性研究[J]. 农业工程学报, 2024, 40(20): 54-62. |
| Cai W J, Liu X Y, Chen Y L, et al. Emission characteristics of biodiesel fueled in agricultural tractors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(20): 54-62. | |
| [3] | Zuo L, Wang J F, Mei D Q, et al. Experimental investigation on combustion and (regulated and unregulated) emissions performance of a common-rail diesel engine using partially hydrogenated biodiesel-ethanol-diesel ternary blend[J]. Renewable Energy, 2022, 185: 1272-1283. |
| [4] | Chen H, Ji Z H, Zhang Z Y, et al. Visual research on spray and low temperature combustion of biodiesel/ethanol/water micro-emulsified fuels[J]. Energy Conversion and Management, 2025, 325: 119347. |
| [5] | Wan H, Liu P J, Qin F, et al. Enhancing electrospray cooling via electrode ring: an experimental and numerical study[J]. International Journal of Thermal Sciences, 2025, 214: 109839. |
| [6] | Jaworek A, Lackowski M, Krupa A, et al. Electrostatic interaction of free EHD jets[J]. Experiments in Fluids, 2006, 40(4): 568-576. |
| [7] | Gan Y H, Luo Y L, Wang M, et al. Effect of alternating electric fields on the behaviour of small-scale laminar diffusion flames[J]. Applied Thermal Engineering, 2015, 89: 306-315. |
| [8] | Meng X W, Wu X M, Kang C, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames[J]. Energy & Fuels, 2012, 26(11): 6612-6620. |
| [9] | Liu H C, Peng F, Cai W W. Dynamic response of diffusion flames under the high voltage direct current electric field[J]. International Communications in Heat and Mass Transfer, 2022, 132: 105891. |
| [10] | Sayed-Kassem A, Elorf A, Gillon P, et al. Numerical modelling to study the effect of DC electric field on a laminar ethylene diffusion flame[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105167. |
| [11] | 刘卓龙, 甘云华, 屈可扬, 等. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| Liu Z L, Gan Y H, Qu K Y, et al. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion[J]. CIESC Journal, 2025, 76(9): 4800-4808. | |
| [12] | Chen N G, Gan Y H, Shi D F, et al. Experimental investigation on the electrospray counterflow flame in a small combustor with a porous media as the grounding electrode[J]. Energy, 2023, 284: 128611. |
| [13] | Deng W W, Klemic J F, Li X H, et al. Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2239-2246. |
| [14] | Kyritsis D C, Guerrero-Arias I, Roychoudhury S, et al. Mesoscale power generation by a catalytic combustor using electrosprayed liquid hydrocarbons[J]. Proceedings of the Combustion Institute, 2002, 29(1): 965-972. |
| [15] | Jiang Z W, Gan Y H, Ju Y G, et al. Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor[J]. Energy, 2019, 179: 843-849. |
| [16] | Huang B Y, Yang X Y, Zhang Y, et al. Characterizing combustion and atomization of PODEn and ethanol/PODEn binary droplets[J]. Fuel, 2023, 341: 127672. |
| [17] | Değirmenci H, Küçükosman R, Yontar A A. An experimental study on droplet-scale combustion and atomization behavior in pure ethanol, methanol, and trimethyl borate, and their blends[J]. Fuel, 2024, 357: 129716. |
| [18] | Rao D C K, Karmakar S, Som S K. Puffing and micro-explosion behavior in combustion of butanol/jet A-1 and acetone-butanol-ethanol (A-B-E)/jet A-1 fuel droplets[J]. Combustion Science and Technology, 2017, 189(10): 1796-1812. |
| [19] | Rao D C K, Syam S, Karmakar S, et al. Experimental investigations on nucleation, bubble growth, and micro-explosion characteristics during the combustion of ethanol/Jet A-1 fuel droplets[J]. Experimental Thermal and Fluid Science, 2017, 89: 284-294. |
| [20] | Rao D C K, Karmakar S, Basu S. Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential[J]. Scientific Reports, 2017, 7: 8925. |
| [21] | Rao D C K, Karmakar S, Basu S. Bubble dynamics and atomization mechanisms in burning multi-component droplets[J]. Physics of Fluids, 2018, 30(6): 067101. |
| [22] | Xu H J, Wang J F, Li B, et al. Electrospray characteristics and cooling performance of dielectric fluid HFE-7100[J]. Energy, 2022, 259: 125072. |
| [23] | Imamura O, Chen B, Nishida S, et al. Combustion of ethanol fuel droplet in vertical direct current electric field[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2005-2011. |
| [24] | Imamura O, Kubo Y, Osaka J, et al. A study on single fuel droplets combustion in vertical direct current electric fields[J]. Proceedings of the Combustion Institute, 2005, 30(2): 1949-1956. |
| [25] | 左磊, 王军锋, 高健, 等. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| Zuo L, Wang J F, Gao J, et al. Electric field-regulating combustion behavior of biodiesel droplet[J]. CIESC Journal, 2024, 75(8): 2983-2990. | |
| [26] | Luo Y L, Jiang Z W, Gan Y H, et al. Evaporation and combustion characteristics of an ethanol fuel droplet in a DC electric field[J]. Journal of the Energy Institute, 2021, 98: 216-222. |
| [27] | Anderson E K, Koch J A, Kyritsis D C. Phenomenology of electrostatically charged droplet combustion in normal gravity[J]. Combustion and Flame, 2008, 154(3): 624-629. |
| [28] | Zhou F, Wang J G, Zhou X C, et al. Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet[J]. Energy, 2021, 224: 120228. |
| [29] | Zhang W, Wang J F, Hu W H, et al. Enhancement of electric field on bubble dispersion characteristics in leaky-dielectric liquid medium[J]. International Journal of Multiphase Flow, 2021, 142: 103743. |
| [30] | Zhang W, Wang J F, Huang Y J, et al. Generation of hydrogen bubble in biodiesel: Influence of non-uniform electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127341. |
| [31] | Zhang W, Wang J F, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field[J]. Chemical Engineering Science, 2020, 215: 115451. |
| [32] | Zhang W, Wang J F, Yang S J, et al. Dynamics of bubble formation on submerged capillaries in a non-uniform direct current electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125512. |
| [33] | Diddens C, Li Y X, Lohse D. Competing Marangoni and Rayleigh convection in evaporating binary droplets[J]. Journal of Fluid Mechanics, 2021, 914: A23. |
| [1] | 刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808. |
| [2] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [3] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [4] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [5] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [6] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [7] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [8] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [9] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [10] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [11] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [12] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
| [13] | 左磊, 王军锋, 高健, 王道睿. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| [14] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [15] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号