化工学报

• •    

原位水热法可控合成Bi2MoO6/MoO3复合纤维及其高效光催化产氢性能

曹铁平1(), 李跃军1,2(), 孙大伟2, 肖磊1   

  1. 1.海南科技职业大学 化学与材料工程学院,海南 海口 570100
    2.白城师范学院 化学学院,吉林 白城 137000
  • 收稿日期:2025-10-09 修回日期:2025-11-15 出版日期:2025-11-27
  • 通讯作者: 李跃军
  • 作者简介:曹铁平(1964—),女,博士,教授,bcctp2008@163.com
  • 基金资助:
    国家自然科学基金项目(21573003);吉林省自然科学基金项目(201205034);吉林省自然科学基金项目(20140101118JC)

Controlled Synthesis of Bi2MoO6/MoO3 Composite Fibers via In-Situ Hydrothermal Method and Their High-Efficiency Photocatalytic Hydrogen Production Performance

Tieping CAO1(), Yuejun LI1,2(), Dawei SUN2, Lei XIAO1   

  1. 1.College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology, Haikou, 570100, China
    2.College of Chemistry, Baicheng Normal University, Jilin Baicheng 137000, China
  • Received:2025-10-09 Revised:2025-11-15 Online:2025-11-27
  • Contact: Yuejun LI

摘要:

以静电纺丝制备的MoO3纳米纤维为基质与钼源,采用原位水热法可控合成Bi2MoO6/MoO3复合纤维。通过调控反应液pH值、反应温度及保温时间等参数,实现对复合纤维物相组成、微观形貌及界面结构的精准调控,并系统探究其光吸收性能、载流子分离效率与光催化产氢活性的构效关系。结果显示,当pH调节为3.0时,所制备的BMM-3.0复合纤维呈现出优异的微观结构,Bi2MoO6纳米片沿MoO3纤维表面均匀且有序地生长,二者形成紧密清晰的异质结界面;其吸收边红移至498 nm,光致发光强度最低,瞬态光电流强度最大,表明光吸收能力与载流子分离效率显著提升。光催化性能测试表明:BMM-3.0的析氢速率达4.39 mmol·g-1·h-1,分别为纯相MoO3的10倍与纯相Bi2MoO6的6倍,且循环使用后产氢率仍保持90% 以上;机理分析证实,材料通过形成S型异质结与界面内置电场,有效抑制光生载流子无效复合,促进光生电子-空穴对分离与定向传输。本研究为高性能铋基复合光催化材料设计提供新途径,为光催化产氢技术实用化奠定实验基础。

关键词: 水热, Bi2MoO6/MoO3, S 型异质结, 复合材料, 制氢

Abstract:

Using MoO3nanofibers prepared by electrospinning as the matrix and molybdenum source, Bi2MoO6/MoO3 composite fibers were controllably synthesized via an in-situ hydrothermal method. By adjusting parameters such as the pH value of the reaction solution, reaction temperature, and holding time, precise regulation of the phase composition, micro-morphology, and interface structure of the composite fibers was achieved. Additionally, the structure-activity relationships among their light absorption performance, carrier separation efficiency, and photocatalytic hydrogen production activity were systematically investigated. The results show that when the pH value is adjusted to 3.0, the prepared BMM-3.0 composite fibers exhibit an excellent microstructure, where Bi2MoO6 nanosheets grow uniformly and orderly along the surface of MoO3 fibers, forming a tight and clear heterojunction interface between the two. The absorption edge of BMM-3.0 redshifts to 498 nm, accompanied by the lowest photoluminescence intensity and the highest transient photocurrent intensity, indicating significant improvements in light absorption capacity and carrier separation efficiency. Photocatalytic performance tests demonstrate that the hydrogen evolution rate of BMM-3.0 reaches 4.39 mmol·g-1·h-1, which is 10 times that of pure-phase MoO3 and 6 times that of pure-phase Bi2MoO6. Moreover, the hydrogen production rate remains above 90% after cyclic use. Mechanism analysis confirms that the material effectively suppresses the invalid recombination of photogenerated carriers and promotes the separation and directional transfer of photogenerated electron-hole pairs by forming an S-scheme heterojunction and an internal electric field at the interface. This study provides a new approach for the design of high-performance bismuth-based composite photocatalytic materials and lays an experimental foundation for the practical application of photocatalytic hydrogen production technology.

Key words: Hydrothermal, Bi2MoO6/MoO3, S-scheme heterojunction, Composites, Hydrogen production

中图分类号: