• •
马明怡1(
), 牛佳宝1, 严鑫1, 李然1, 周高勇1, 朱佳佳1, 王兴宝2, 何孝军1(
), 李宏强1(
)
收稿日期:2025-08-18
修回日期:2025-10-24
出版日期:2025-12-15
通讯作者:
何孝军,李宏强
作者简介:马明怡(2000—),女,硕士研究生,2382044161@qq.com
基金资助:
Mingyi MA1(
), Jiabao NIU1, Xin YAN1, Ran LI1, Gaoyong ZHOU1, Jiajia ZHU1, Xingbao WANG2, Xiaojun HE1(
), Hongqiang LI1(
)
Received:2025-08-18
Revised:2025-10-24
Online:2025-12-15
Contact:
Xiaojun HE, Hongqiang LI
摘要:
开发高效电催化剂是提升二氧化碳还原(CO2RR)选择性与效率、助力碳中和的关键。针对传统粉末状碳基催化剂易脱落、传质差、活性位点易被覆盖等问题,本研究提出将其稳定于三维多孔碳气凝胶载体的策略。以煤焦油沥青为前驱体,通过冷冻干燥结合热解工艺,成功制备了Ni-N共掺杂碳气凝胶催化剂(Ni-NCA)。该催化剂具有高比表面积和贯通的三维孔道网络,有效均匀分散并稳定Ni-N活性位点,同时促进CO2吸附、电解质渗透和电子传输。将其用于CO2RR,在-0.8 V (vs RHE)下CO法拉第效率(FECO)高达95.6%,且在-0.7至-1.1 V (vs RHE)的宽电位窗口内FECO均超过90%。50小时恒电位(-0.8 V) (vs RHE)测试中电流密度稳定,FECO保持在82%以上,展现出优异的催化活性和稳定性,具有良好的应用前景。
中图分类号:
马明怡, 牛佳宝, 严鑫, 李然, 周高勇, 朱佳佳, 王兴宝, 何孝军, 李宏强. Ni-N共掺杂碳气凝胶的构筑及其电催化还原CO2性能[J]. 化工学报, DOI: 10.11949/0438-1157.20250930.
Mingyi MA, Jiabao NIU, Xin YAN, Ran LI, Gaoyong ZHOU, Jiajia ZHU, Xingbao WANG, Xiaojun HE, Hongqiang LI. Construction of Ni-N co-doped carbon aerogel and its performance in electrocatalytic reduction of CO2[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250930.
图2 (a)前驱体的SEM图;(b-c)Ni4-NCA在不同放大倍率下的SEM图片;(d-e)Ni4-NCA在不同放大倍率下的TEM图;(f)Ni4-NCA的HR-TEM图片(插图:选取衍射图);(g)Ni4-NCA的元素映射图
Fig.2 (a) SEM image of precursor; (b-c) SEM images of Ni4-NCA at different magnifications; (d-e) TEM images of Ni4-NCA at different magnifications; (f) HR-TEM image of Ni4-NCA (inset: SAED pattern); (g) EDS mapping images of Ni4-NCA
图4 Ni4-NCA、Ni2.5-NCA、Ni4-NC 和 N-C氮气吸脱附等温曲线图(a)和孔径分布图(b)
Fig.4 (a) N2 adsorption-desorption isotherms and (b) pore size distribution of Ni4-NCA、Ni2.5-NCA、Ni4-NC and N-C
图5 (a)Ni4-NCA、Ni2.5-NCA、Ni4-NC和N-C的XRD谱图;(b)Ni4-NCA、Ni2.5-NCA和Ni4-NC的Raman光谱图
Fig.5 (a) X-ray diffraction patterns of Ni4-NCA; Ni2.5-NCA; Ni4-NC and N-C;(b) Raman spectra of Ni4-NCA, Ni2.5-NCA and Ni4-NC
图8 (a)Ni4-NCA、Ni2.5-NCA、Ni4-NC和N-C的高分辨率N 1s 谱图;(b)Ni4-NCA、Ni2.5-NCA和N-C的高分辨率注:Ni 2p 谱图
Fig.8 (a) High resolution N 1s of Ni4-NCA, Ni2.5-NCA, Ni4-NC and N-C; (b) High resolution Ni 2p of Ni4-NCA, Ni4-NC and N-C.
| Catalyst | Ni (at.%) |
|---|---|
Ni4-NCA Ni2.5-NCA Ni4-NC N-C | 0.97% 0.17% 0.46% 0.01% |
表1 XPS 测得的Ni原子含量
Table 1 XPS measurements for the atomic concentration of Ni
| Catalyst | Ni (at.%) |
|---|---|
Ni4-NCA Ni2.5-NCA Ni4-NC N-C | 0.97% 0.17% 0.46% 0.01% |
| Catalyst | Ni (wt.%) |
|---|---|
Ni4-NCA Ni2.5-NCA Ni4-NC N-C | 2.18% 0.96% 1.90% 0.01% |
表2 ICP-OES 测得的Ni质量含量
Table 2 ICP-OES measurements for Ni weight percent.
| Catalyst | Ni (wt.%) |
|---|---|
Ni4-NCA Ni2.5-NCA Ni4-NC N-C | 2.18% 0.96% 1.90% 0.01% |
图10 样品Ni4-NCA、Ni2.5-NCA、Ni4-NC和 N-C的电化学测试(a)线性伏安扫描曲线;(b)不同电位下CO法拉第效率曲线;(c)不同电位下CO偏电流密度曲线;(d)在-0.8 V (vs RHE)条件下,样品Ni4-NCA经50小时电解稳定性测试图
Fig.10 (a) Linear sweep voltammetric (LSV) curves; (b) FEco at different potentials; (c) jco at different potentials acquired in CO2-saturated 0.5 M KHCO3 electrolytes for Ni4-NCA, Ni2.5-NCA, Ni4-NC and N-C; (d) Stability of Ni4-NCA: The FECO and current density at a potential of -0.8 V (vs RHE) during 50 h
| 催化剂 | 电解液 | 电压 (vs RHE)/V | CO法拉第效率(%) | 电流密度 (mA · cm-2) | 参考文献 |
|---|---|---|---|---|---|
Ni4-NCA Ni-NC(HPU) | 0.5 M KHCO3 0.5 M KHCO3 | -0.8 -0.8 | 95.6 91 | 14.85 27.1 | This work [ |
Ni@NC SA-Ni@NC | 0.5 M KHCO3 0.1 M KHCO3 | -0.6 ~ -1.3 -0.6 | 80> 86.2 | 16 10.1 | [ [ |
| Ni-N-MEGO | 0.5 M KHCO3 | -0.55~ -0.7 | 92.1 | 28.6 | [ |
| NiSA-NGA | 0.5 M KHCO3 | -0.8 | 90.2 | 6.5 | [ |
| SA-Ni/N-CS | 0.5 M KHCO3 | -0.8 | 95.1 | — | [ |
| Ni-N3-C | 0.5 M KHCO3 | -0.65 | 95.6 | 6.64 | [ |
| Ni-PACN | 0.5 M KHCO3 | -0.7 ~ -1.1 | 95 | 21 | [ |
| Ni–N–C | 0.5 M KHCO3 | -0.65 | 97 | 6.5 | [ |
表3 Ni4-NCA与文献报道的碳基单原子镍催化剂CO2RR性能对比
Table 3 Performance comparison of CO2RR between Ni4-NCA and literature-reported carbon-based single-atom nickel catalysts
| 催化剂 | 电解液 | 电压 (vs RHE)/V | CO法拉第效率(%) | 电流密度 (mA · cm-2) | 参考文献 |
|---|---|---|---|---|---|
Ni4-NCA Ni-NC(HPU) | 0.5 M KHCO3 0.5 M KHCO3 | -0.8 -0.8 | 95.6 91 | 14.85 27.1 | This work [ |
Ni@NC SA-Ni@NC | 0.5 M KHCO3 0.1 M KHCO3 | -0.6 ~ -1.3 -0.6 | 80> 86.2 | 16 10.1 | [ [ |
| Ni-N-MEGO | 0.5 M KHCO3 | -0.55~ -0.7 | 92.1 | 28.6 | [ |
| NiSA-NGA | 0.5 M KHCO3 | -0.8 | 90.2 | 6.5 | [ |
| SA-Ni/N-CS | 0.5 M KHCO3 | -0.8 | 95.1 | — | [ |
| Ni-N3-C | 0.5 M KHCO3 | -0.65 | 95.6 | 6.64 | [ |
| Ni-PACN | 0.5 M KHCO3 | -0.7 ~ -1.1 | 95 | 21 | [ |
| Ni–N–C | 0.5 M KHCO3 | -0.65 | 97 | 6.5 | [ |
图11 Ni4-NCA、Ni2.5-NCA、Ni4-NC和N-C的(a)Tafel斜率图;(b)TOF图;(c)电流密度差值∆j与扫速的关系图;(d)电化学阻抗图
Fig.11 (a) Tafel curves; (b) TOF; (c) The plot of charging current density differences Δj against the scan rate for the calculation of ECSA acquired in CO2-saturated 0.5 M KHCO3 electrolyte for Ni4-NCA, Ni2.5-NCA, Ni4-NC and N-C; (d) Electrochemical impedance spectra of Ni4-NCA、Ni2.5-NCA、Ni4-NC and N-C
图12 在5到50 mV s-1的扫描速率下(a)Ni4-NCA、(b)Ni2.5-NCA、(c)Ni4-NC、(d)N-C从-0.06 到-0.16 V (vs RHE)的循环伏安曲线;
Fig.12 (a) Cyclic voltammetry curves from -0.06 V to -0.16 V (vs RHE) at scan rates ranging from 5 to 50 mV·s-1 for (a) Ni4-NCA, (b) Ni2.5-NCA (c) Ni4-NC and (d) N-C.
图13 循环50 h后Ni4-NCA的(a)高分辨率C 1s谱图,(b)高分辨率N 1s谱图,(c)高分辨率Ni 2p谱图,(d)XRD谱图
Figure 13 (a) High-resolution C 1s, (b) N 1s, (c) Ni 2p XPS spectrum, and (d) XRD pattern of the Ni₄-NCA sample after 50 h of cycling.
| [1] | Wang C L, Gao W J, Yang H X, et al. Advances and challenges in the electroreduction of carbon dioxide in acidic electrolyte[J]. Journal of Energy Chemistry, 2025, 107: 732-749. |
| [2] | Wang R T, Yang X K, Zhang J P, et al. In-situ characterization technologies and theoretical calculations in carbon dioxide reduction: in-depth understanding of reaction mechanisms and rational design of electrocatalysts[J]. Coordination Chemistry Reviews, 2025, 533: 216541. |
| [3] | Yi W L, Hou C S, Li R Y, et al. Designer electron-reservoir single-atom electrocatalyst for efficient carbon dioxide reduction[J]. Chemical Engineering Journal, 2025, 507: 160387. |
| [4] | Wang J J, Zhu Z Z, Lin Y X, et al. Nano-engineering in zinc-based catalysts for CO2 electroreduction: Advances and challenges[J]. Carbon Neutralization, 2024, 3(3): 423-440. |
| [5] | Guo C, Li N P, Gao S S, et al. Recent advancements in microenvironmental regulation of Single-Atom catalysts for electrochemical conversion of CO2 to CO[J]. Fuel, 2024, 367: 131416. |
| [6] | Gan K N, Li H Q, Li R, et al. Electroreduction of CO2 to syngas with controllable H2/CO ratios in a wide potential range over Ni–N Co-doped ultrathin carbon nanosheets[J]. Inorganic Chemistry Frontiers, 2023, 10(8): 2414-2422. |
| [7] | Guo H Z, Raj J, Wang Z M, et al. Synergistic effects of amine functional groups and enriched-atomic-iron sites in carbon dots for industrial-current–density CO2 electroreduction[J]. Small, 2024, 20(32): 2311132. |
| [8] | Cerrillo M I, Jiménez C, Ortiz M Á, et al. Electrocatalytic reduction of CO2 with N/B Co-doped reduced graphene oxide based catalysts[J]. Journal of Industrial and Engineering Chemistry, 2023, 127: 101-109. |
| [9] | Sun Y, Zhao K, Deng X M, et al. Metal-free Se-based tetra-doped carbon catalyst for high-selective electro-reduction of CO2 into CO[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110435. |
| [10] | Qi Z J, Zhou Y, Guan R N, et al. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis[J]. Advanced Materials, 2023, 35(38): 2210575. |
| [11] | Tang J Y, Weiss E, Shao Z P. Advances in cutting-edge electrode engineering toward CO2 electrolysis at high current density and selectivity: a mini-review[J]. Carbon Neutralization, 2022, 1(2): 140-158. |
| [12] | Wen M, Sun N N, Jiao L, et al. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current[J]. Angewandte Chemie International Edition, 2024, 63(10): e202318338. |
| [13] | Wang T F, Wang J H, Lu C B, et al. Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% CO selectivity and industrially-relevant current density[J]. Advanced Materials, 2023, 35(35): 2205553. |
| [14] | Lin D, Wang T T, Zhao Z L, et al. Molten-salt-assisted synthesis of single-atom iron confined N-doped carbon nanosheets for highly efficient industrial-level CO2 electroreduction and Zn-CO2 batteries[J]. Nano Energy, 2023, 113: 108568. |
| [15] | Liu K Y, Sun Z Y, Chen W X, et al. Ultra-fast pulsed discharge preparation of coordinatively unsaturated asymmetric copper single-atom catalysts for CO2 reduction[J]. Advanced Functional Materials, 2024, 34(16): 2312589. |
| [16] | Yao D Z, Tang C, Vasileff A, et al. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation[J]. Angewandte Chemie International Edition, 2021, 60(33): 18178-18184. |
| [17] | Liu H M, Yan T, Tan S D, et al. Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(8): 5333-5342. |
| [18] | Wang W Y, He X H, Zhang K, et al. Surfactant-modified Zn nanosheets on carbon paper for electrochemical CO2 reduction to CO[J]. Chemical Communications, 2022, 58(33): 5096-5099. |
| [19] | Wu Q, Wu C C. Mechanism insights on single-atom catalysts for CO2 conversion[J]. Journal of Materials Chemistry A, 2023, 11(10): 4876-4906. |
| [20] | Sun W L, Liu S L, Sun H F, et al. Low-coordinated Ni single atom catalyst with carbon coordination for efficient CO2 electroreduction[J]. Advanced Energy Materials, 2025, 15(26): 2500283. |
| [21] | Xiong R Z, Xu H M, Zhu H R, et al. Recent progress in Cu-based electrocatalysts for CO2 reduction[J]. Chemical Engineering Journal, 2025, 505: 159210. |
| [22] | Liao W, Xiao K, Tian T, et al. Carbon aerogel monoliths from polymers: a review[J]. Journal of Cleaner Production, 2024, 437: 140736. |
| [23] | Godino-Ojer M, Soriano E, Calvino-Casilda V, et al. Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry[J]. Chemical Engineering Journal, 2017, 314: 488-497. |
| [24] | Wu K Z, Zhang L, Yuan Y F, et al. Zinc-air batteries: an iron-decorated carbon aerogel for rechargeable flow and flexible Zn–air batteries[J]. Advanced Materials, 2020, 32(32): 2070241. |
| [25] | Ma Z S, Zhang T Y, Lin L L, et al. Ni single-atom arrays as self-supported electrocatalysts for CO2RR[J]. AIChE Journal, 2023, 69(10): e18161. |
| [26] | Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials, 2021, 11(39): 2102074. |
| [27] | Sun X R, Wang S B, Hou Y D, et al. Self-supporting metal–organic framework-based hydrogen and oxygen electrocatalysts[J]. Journal of Materials Chemistry A, 2023, 11(25): 13089-13106. |
| [28] | Wang G T, Li X, Yang X H, et al. Metal-based aerogels catalysts for electrocatalytic CO2 reduction[J]. Chemistry – A European Journal, 2022, 28(64): e202201834. |
| [29] | Zhang F W, Zhang H, Jia Z H, et al. Nickel single atom density-dependent CO2 efficient electroreduction[J]. Small, 2024, 20(16): 2308080. |
| [30] | 陈娅. 改性煤沥青基多孔碳的制备及其在超级电容器中的应用[D]. 贵阳: 贵州大学, 2024. |
| Chen Y. Preparation of Modified Coal Tar Pitch-Based Porous Carbon and Its Application in Supercapacitors[D]. Guiyang: Guizhou University, 2024. | |
| [31] | 黄玉. 煤沥青制备活性炭氮改性及CO2吸附性能研究[D]. 杭州: 浙江大学, 2024. |
| Huang Y. Study on nitrogen modification and CO2 adsorption properties of activated carbon prepared from coal tar pitch[D]. Hangzhou: Zhejiang University, 2024. | |
| [32] | Huang L L, Zhang X W, Wang L, et al. Boosting catalytic performance of N doped porous carbon derived from coal tar pitch: The role of N species and the contribution of 1O2 [J]. Journal of Water Process Engineering, 2025, 72: 107426. |
| [33] | Guo F, Jiang Y Q, Xu Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9: 881. |
| [34] | Li C, Wang Y W, Xiao N, et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction[J]. Carbon, 2019, 151: 46-52. |
| [35] | He Q C, Zhu Y P, Li Y, et al. Etch-driven N, P Co-doped hierarchical porous carbon embedded with Ni nanoparticles as an efficient dynamic carrier for room-temperature NaS battery[J]. Journal of Energy Storage, 2023, 74: 109353. |
| [36] | Lee G B, Joo W H, Kang H Y, et al. Fabrication of Ni nanoparticle-embedded porous carbon nanofibers through selective etching of selectively oxidized MgO[J]. Electronic Materials Letters, 2022, 18(2): 198-204. |
| [37] | Yu J, Li J, Xu C Y, et al. Atomically dispersed Ni–N4 species and Ni nanoparticles constructing N-doped porous carbon fibers for accelerating hydrogen evolution[J]. Carbon, 2021, 185: 96-104. |
| [38] | Feng L L, Li Y H, Fu C L, et al. Etching-assisted synthesis of Ni/Ni single atom anchored porous graphitic nanocarbon for improved hydrogen evolution reaction[J]. New Journal of Chemistry, 2023, 47(38): 17657-17665. |
| [39] | Ning H, Guo Z H, Wang W H, et al. Ammonia etched petroleum pitch-based porous carbon as efficient catalysts for CO2 electroreduction[J]. Carbon Letters, 2022, 32(3): 807-814. |
| [40] | Chen X Y, Liu W, Sun Y X, et al. KOH-Enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction[J]. Small Methods, 2023, 7(3): 2201311. |
| [41] | Shang Y, Ding Y X, Zhang P L, et al. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
| [42] | He C, Zhang Y, Zhang Y F, et al. Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen[J]. Angewandte Chemie International Edition, 2020, 59(12): 4914-4919. |
| [43] | Li H Q, Gan K N, Li R, et al. Highly dispersed NiO clusters induced electron delocalization of Ni-N-C catalysts for enhanced CO2 electroreduction[J]. Advanced Functional Materials, 2023, 33(1): 2208622. |
| [44] | Li Y X, Lu X F, Xi S B, et al. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction[J]. Angewandte Chemie International Edition, 2022, 61(18): e202201491. |
| [45] | 龙雪梅. 碳基材料中镍催化剂的配位与形态对电催化二氧化碳还原的影响[D]. 广州: 广州大学, 2025. |
| Long X M. Effect of coordination and morphology of Ni catalysts in carbon-based materials on electrochemical CO2 reduction[D]. Guangzhou: Guangzhou University, 2025. | |
| [46] | Zhang C, Fu Z H, Zhao Q, et al. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction[J]. Electrochemistry Communications, 2020, 116: 106758. |
| [47] | Cheng Y, Zhao S Y, Li H B, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J]. Applied Catalysis B: Environmental, 2019, 243: 294-303. |
| [48] | Mou K W, Chen Z P, Zhang X X, et al. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring[J]. Small, 2019, 15(49): 1903668. |
| [49] | Yuan C Z, Zhan L Y, Liu S J, et al. Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction[J]. Inorganic Chemistry Frontiers, 2020, 7(8): 1719-1725. |
| [50] | Zhang Y, Jiao L, Yang W J, et al. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(14): 7607-7611. |
| [51] | Koshy D M, Chen S C, Lee D U, et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts[J]. Angewandte Chemie International Edition, 2020, 59(10): 4043-4050. |
| [52] | Wang J L, Huang Y-C, Wang Y Q, et al. Atomically dispersed metal–nitrogen–carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction[J]. ACS Catalysis, 2023, 13(4): 2374-2385. |
| [53] | Ko Y J, Lim C, Jin J, et al. Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO2 electrolysis[J]. Nature Communications, 2024, 15: 3356. |
| [54] | Chen Y J, Ji S F, Wang Y G, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2017, 56(24): 6937-6941. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 周怀荣, 伊嘉伟, 曹阿波, 郭奥雪, 王东亮, 杨勇, 杨思宇. 共电解耦合CO2间接加氢制甲醇工艺集成设计与性能评价[J]. 化工学报, 2025, 76(9): 4586-4600. |
| [6] | 佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892. |
| [7] | 邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799. |
| [8] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [9] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [10] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [11] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [12] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [13] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [14] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [15] | 巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号