• •
陈帅1,2(
), 胡彦伟1,2(
), 刘子赫1,2, 加少坤1,2
收稿日期:2025-09-23
修回日期:2025-11-03
出版日期:2025-12-19
通讯作者:
胡彦伟
作者简介:陈帅(2000—),男,博士研究生,24B902004@hit.edu.cn
基金资助:
Shuai CHEN1,2(
), Yanwei HU1,2(
), Zihe LIU1,2, Shaokun JIA1,2
Received:2025-09-23
Revised:2025-11-03
Online:2025-12-19
Contact:
Yanwei HU
摘要:
沸腾传热是解决高功率器件散热问题的有效途径之一,然而沸腾传热各阶段对表面润湿特性的需求不同,亟需一种能根据沸腾阶段自主调整润湿特性的表面。利用两步交联法制备了二硫键液晶弹性体材料,将其与铜基底复合,并在其上热压形成微结构,借助液晶弹性体材料的形状记忆功能以及微结构对表面润湿性的影响,制备了温度自适应润湿性表面,实现了接触角从低温96°到高温74°到的转变。通过实验系统研究了不同温度和热通量下自适应润湿性表面的沸腾特性,包括气泡和液体行为及沸腾曲线。结果表明,低热通量下,自适应润湿表面促进气泡成核并降低过热度;高热通量下,表面增强液体补充并延迟干涸,提高临界热通量。与光滑液晶弹性体表面相比,传热系数最高提高6.5%。验证了自适应表面调控沸腾传热的可行性。
中图分类号:
陈帅, 胡彦伟, 刘子赫, 加少坤. 液晶弹性体温度自适应润湿性表面沸腾特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251059.
Shuai CHEN, Yanwei HU, Zihe LIU, Shaokun JIA. Study on boiling characteristics of liquid crystal elastomer surfaces with thermally adaptive wettability[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251059.
| [1] | Khan N, Pinjala D, Toh K C. Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: a review[C]//Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004). IEEE, 2005: 273-280. |
| [2] | Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
| [3] | Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limitations[J]. Journal of Electronic Packaging, 2011, 133(4): 041002. |
| [4] | Mudawar I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021012. |
| [5] | Liang G T, Mudawar I. Review of spray cooling-Part 1: Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1174-1205. |
| [6] | Liang G T, Mudawar I. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933. |
| [7] | Liang G T, Mudawar I. Review of nanoscale boiling enhancement techniques and proposed systematic testing strategy to ensure cooling reliability and repeatability[J]. Applied Thermal Engineering, 2021, 184: 115982. |
| [8] | Kharangate C R, Mudawar I. Review of computational studies on boiling and condensation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1164-1196. |
| [9] | Cho H J, Preston D J, Zhu Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2017, 2: 16092. |
| [10] | Ali A F, El-Genk M S. Spreaders for immersion nucleate boiling cooling of a computer chip with a central hot spot[J]. Energy Conversion and Management, 2012, 53(1): 259-267. |
| [11] | Su G Y, Bucci M, McKrell T, et al. Transient boiling of water under exponentially escalating heat inputs. Part I: Pool boiling[J]. International Journal of Heat and Mass Transfer, 2016, 96: 667-684. |
| [12] | Palko J W, Zhang C, Wilbur J D, et al. Approaching the limits of two-phase boiling heat transfer: High heat flux and low superheat[J]. Applied Physics Letters, 2015, 107(25): 253903. |
| [13] | Hu H, Weibel J A, Garimella S V. A coupled wicking and evaporation model for prediction of pool boiling critical heat flux on structured surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 136: 373-382. |
| [14] | Dadhich M, Prajapati O S. A brief review on factors affecting flow and pool boiling[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 607-625. |
| [15] | Michaie S, Rullière R, Bonjour J. Experimental study of bubble dynamics of isolated bubbles in water pool boiling at subatmospheric pressures[J]. Experimental Thermal and Fluid Science, 2017, 87: 117-128. |
| [16] | Ahmad S, Eze C, Liu H Q, et al. Lattice Boltzmann study of bubble dynamics and heat transfer on a hybrid rough surface with a cavity-pillar structure[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104896. |
| [17] | Li Y Y, Li Y T, Jiao W, et al. Manipulating the heat transfer of pool boiling by tuning the bubble dynamics with mixed wettability surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120996. |
| [18] | Hu H T, Zhao Y X, Lai Z C, et al. Influence of surface wettability on pool boiling heat transfer on metal foam covers[J]. International Journal of Thermal Sciences, 2021, 168: 107069. |
| [19] | Suroto B J, Tashiro M, Hirabayashi S, et al. Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface[J]. Journal of Thermal Science and Technology, 2013, 8(1): 294-308. |
| [20] | Kong X, Wei J J, Deng Y P, et al. A study on enhancement of boiling heat transfer by mixed-wettability surface[J]. Heat Transfer Engineering, 2018, 39(17/18): 1552-1561. |
| [21] | O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102. |
| [22] | 林石泉, 赵雅鑫, 吕中原, 等. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
| Lin S Q, Zhao Y X, Lyu Z Y, et al. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam[J]. CIESC Journal, 2021, 72(S1): 295-301. | |
| [23] | Yao Z H, Lu Y W, Kandlikar S G. Fabrication of nanowires on orthogonal surfaces of microchannels and their effect on pool boiling[J]. Journal of Micromechanics and Microengineering, 2012, 22(11): 115005. |
| [24] | Chen R K, Lu M-C, Srinivasan V, et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters, 2009, 9(2): 548-553. |
| [25] | Kim S, Kim H D, Kim H, et al. Effects of nano-fluid and surfaces with nano structure on the increase of CHF[J]. Experimental Thermal and Fluid Science, 2010, 34(4): 487-495. |
| [26] | Chu K-H, Enright R, Wang E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters, 2012, 100(24): 241603. |
| [27] | Jun S, Kim J, You S M, et al. Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations[J]. Science and Technology of Nuclear Installations, 2018, 2018(1): 8623985. |
| [28] | 马强, 吴晓敏, 朱毅. 表面润湿性对核态池沸腾影响的实验研究[J]. 工程热物理学报, 2019, 40(3): 635-638. |
| Ma Q, Wu X M, Zhu Y. Experimental investigation of the effect of surface wettability on nucleate pool boiling[J]. Journal of Engineering Thermophysics, 2019, 40(3): 635-638. | |
| [29] | Zupančič M, Steinbücher M, Gregorčič P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297. |
| [30] | Jo H, Kim S, Park H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: Controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109. |
| [31] | Hao W, Wang T, Jiang Y Y, et al. Pool boiling heat transfer on deformable structures made of shape-memory-alloys[J]. International Journal of Heat and Mass Transfer, 2017, 112: 236-247. |
| [32] | Shin S, Choi G, Rallabandi B, et al. Enhanced boiling heat transfer using self-actuated nanobimorphs[J]. Nano Letters, 2018, 18(10): 6392-6396. |
| [33] | Bertossi R, Caney N, Gruss J A, et al. Pool boiling enhancement using switchable polymers coating[J]. Applied Thermal Engineering, 2015, 77: 121-126. |
| [34] | 陈宏霞, 李林涵, 王逸然, 等. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287. |
| Chen H X, Li L H, Wang Y R, et al. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space[J]. CIESC Journal, 2021, 72(6): 3278-3287. | |
| [35] | 陈宏霞, 李林涵, 高翔, 等. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
| Chen H X, Li L H, Gao X, et al. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565. | |
| [36] | 刘长岳, 袁凌昕, 杨继萍, 等. 液晶弹性体智能材料的先进制造技术与结构设计[J]. 液晶与显示, 2025, 40(1): 35-54. |
| Liu C Y, Yuan L X, Yang J P, et al. Advanced manufacturing techniques and structure design of liquid crystal elastomer smart materials[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(1): 35-54. | |
| [37] | 刘妍, 刘悦, 杨孔华, 等. 可切换润湿性超疏水表面制备方法及应用[J]. 表面技术, 2023, 52(7): 299-305, 335. |
| Liu Y, Liu Y, Yang K H, et al. Preparation method and application of switchable wettability superhydrophobic surface[J]. Surface Technology, 2023, 52(7): 299-305, 335. | |
| [38] | Li M, Dai S P, Dong X, et al. High-strength, large-deformation, dual cross-linking network liquid crystal elastomers based on quadruple hydrogen bonds[J]. Langmuir, 2022, 38(4): 1560-1566. |
| [39] | 许意达. 热致液晶弹性体致动器的制备与应用研究[D]. 常州: 常州大学, 2022. |
| Xu Y D. Preparation and application of thermotropic liquid crystal elastomer actuator[D]. Changzhou: Changzhou University, 2022. | |
| [40] | Bharadwaj A, Misra R D. Experimental analysis of pool boiling heat transfer on surfaces fabricated by electric discharge coating[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106397. |
| [41] | Jaswal R, Sathyabhama A, Singh K, et al. Experimental and numerical investigation of pool boiling heat transfer from finned surfaces[J]. Applied Thermal Engineering, 2023, 233: 121167. |
| [42] | Xie S Z, Jiang M N, Kong H J, et al. An experimental investigation on the pool boiling of multi-orientated hierarchical structured surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120595. |
| [43] | Wang J J, Liang G T. Experimental investigation of pool boiling performance and bubble behavior on square micro-pillar structured surfaces[J]. International Journal of Heat and Mass Transfer, 2025, 239: 126556. |
| [44] | Tang L C, Xu W, Tang L Y, et al. Experimental investigation on pool boiling heat transfer enhancement using reticular bi-conductive surfaces[J]. International Communications in Heat and Mass Transfer, 2024, 159: 107965. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [3] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [4] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [5] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [6] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [7] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [8] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [9] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [10] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [11] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [12] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| [13] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [14] | 胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837. |
| [15] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号