| [1] |
郝明晟, 李印实, 何雅玲. 质子交换膜燃料电池催化层模型研究进展与展望[J].科学通报,2022, 67(19):2192-2211.
|
|
Hao M S, Li Y S, He Y L. Model of catalyst layers for proton exchange membrane fuel cells: Progress and perspective[J]. Chinese Science Bulletin, 2022, 67(19): 2192-2211.
|
| [2] |
Li L, Yu H J, Li Y S, et al. Characteristics of the transient thermal load and deformation of the evacuated receiver in solar parabolic trough collector[J]. Science China Technological Sciences, 2020, 63 (7): 1188-1201.
|
| [3] |
BP. bp Statistical Review of World Energy 2021[R]. London: BP, 2021.
|
| [4] |
Lehtola T, Zahedi A. Solar energy and wind power supply supported by storage technology: a review [J]. Sustainable Energy Technologies and Assessments, 2019, 35: 25-31.
|
| [5] |
郝明晟, 丁宗耀, 胡玉波, 等. PEMFC中Pt-Co核壳催化剂衰减规律研究[J]. 科学通报, 2025, 70: 1-10.
|
|
Hao M S, Ding Z Y, Hu Y B, et al. Investigation on the degradation of Pt-Co core-shell catalysts in PEMFCs[J]. Chinese Science Bulletin, 2025, 70: 1-10.
|
| [6] |
Abedin A H, Rosen M A. Closed and open thermochemical energy storage: Energy- and exergy-based comparisons[J]. Energy, 2012, 41(1): 83-92.
|
| [7] |
Bielsa Linaza D, Faik A, Arias Ergueta P L. Thermochemical energy storage at high temperature for concentrated solar power plants, a critical review[J]. Dyna, 2023, 98(6): 612-619.
|
| [8] |
Yan T, Wang R Z, Li T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31.
|
| [9] |
Tregambi C, Di Lauro F, Pascual S, et al. Solar-driven calcium looping in fluidized beds for thermochemical energy storage[J]. Chemical Engineering Journal, 2023, 466: 142708.
|
| [10] |
Hanak D P, Michalski S, Manovic V. Supercritical CO2 cycle for coal-fired power plant based on calcium looping combustion[J]. Thermal Science and Engineering Progress, 2020, 20: 100723.
|
| [11] |
于戈, 彭晓光, 吕哲. 用于聚光太阳能发电系统的钙基热化学储能研究进展[J]. 太阳能学报, 2025, 46(7): 766-777.
|
|
Yu G, Peng X G, Lyu Z. Research progress on Calcium-based thermochemical energy storage for concentrated solar power systems[J]. Acta Energiae Solaris Sinica, 2025, 46(7): 766-777.
|
| [12] |
Che J B, Wang F N, Song C, et al. A multi-scale modeling of Ca-based material for solar-driven calcium-looping energy storage process: From calcination reactor to energy carrier[J]. Chemical Engineering Science, 2024, 293: 119995.
|
| [13] |
Che J B, Yang X Y, et al. Multi-scale simulation for energy release performance of carbonation process in solar-driven calcium-looping: From grain to reactor[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115202.
|
| [14] |
Liu L, Zhou Z J, Liu Y, et al. Lattice matching strategy in Cu-based oxides for large-scale and long-term thermochemical energy storage[J]. Energy Storage Materials, 2024, 73: 103825.
|
| [15] |
Da Y, Xuan Y M, Teng L, et al. Calcium-based composites for direct solar-thermal conversion and thermochemical energy storage[J]. Chemical Engineering Journal, 2020, 382: 122815.
|
| [16] |
Teng L, Xuan Y M, Da Y, et al. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845.
|
| [17] |
Yan X Y, Li Y J, Sun C Y, et al. Hydrogen production from absorption-enhanced steam gasification of Enteromorpha prolifera and its char using Ce-doped CaO material[J]. Fuel, 2021, 287: 119554.
|
| [18] |
Guo H X, Kou X C, Zhao Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246.
|
| [19] |
Chai F Y, Zhu P W, Xu H R, et al. Mn and Al co-modified CaO-based composites from various calcium precursors for thermochemical energy storage: High energy storage density and excellent solar absorption ability[J]. Solar Energy Materials and Solar Cells, 2024, 269: 112761.
|
| [20] |
Long Y, Gu Q, Wang C Q, et al. High-entropy fluorite oxide-modified CaO-based sorbent pellets for enhanced high-temperature CO2 capture[J]. Small, 2024, 20(52): 2406165.
|
| [21] |
Spadoni A, Sau S, Corsaro N, et al. Thermochemical heat storage through CaO-Mayenite/CaCO3 system: Thermal performances comparison for two synthesis methods[J]. Journal of Energy Storage, 2023, 72: 108386.
|
| [22] |
Sun H, Li Y J, Bian Z G, et al. Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO3 cycles[J]. Energy Conversion and Management, 2019, 197: 111885.
|
| [23] |
Zheng H B, Liu X L, Xuan Y M, et al. Efficient direct solar-driven thermochemical energy storage of (AlMgFeMn)OxCaCO3 pellets in a fluidized bed reactor[J]. Energy Conversion and Management, 2023, 285: 116990.
|
| [24] |
Ma Z K, Li Y J, Zhang W, et al. Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles[J]. Energy, 2020, 207: 118291.
|
| [25] |
Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry and Biotechnology, 1974, 24(4/5): 221-227.
|
| [26] |
López-Pérez L, Zarubina V, Melián-Cabrera I. The Brunauer–Emmett–Teller model on alumino-silicate mesoporous materials. How far is it from the true surface area?[J]. Microporous and Mesoporous Materials, 2021, 319: 111065.
|
| [27] |
Mwatukange J P, Rahman A, Chiguvare Z. Synthesis and Characterisation of iron doped manganese oxides for thermal energy storage[J]. Results in Chemistry, 2024, 12: 101923.
|
| [28] |
姚亮, 贺楠, 陈奇成. 氧化钙基多级孔隙结构储热模块的制备及其储热性能[J]. 储能科学与技术, 2024, 13(12): 4282-4289.
|
|
Yao L, He N, Chen Q C. Preparation and thermal storage properties of CaO-based thermal storage module with a hierarchically porous structure[J]. Energy Storage Science and Technology, 2024, 13(12): 4282-4289.
|
| [29] |
Tian X K, Lin S C, Yan J, et al. Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process[J]. Chemical Engineering Journal, 2022, 428: 131229.
|
| [30] |
刘众元, 王娜娜, 冯于川, 等. 钙循环过程中CaO晶粒烧结机理的ReaxFF-MD研究[J]. 动力工程学报, 2025, 45(8): 1243-1250.
|
|
Liu Z Y, Wang N N, Feng Y C, et al. Research on Sintering Mechanism of CaO Grains During Calcium Cycle Process by Using ReaxFF-MD[J]. Journal of Chinese Society of Power Engineering, 2025, 45(8): 1243-1250.
|