• •
收稿日期:2025-09-03
修回日期:2026-01-19
出版日期:2026-01-20
通讯作者:
杨晖
作者简介:杨磊(2002—),男,硕士研究生,socialclubyang@163.com
基金资助:
Lei YANG1(
), Hui YANG1(
), Jingfang XU2, Xiujuan ZHU3
Received:2025-09-03
Revised:2026-01-19
Online:2026-01-20
Contact:
Hui YANG
摘要:
随着数据中心算力的不断提升,对服务器冷却能力的要求也日渐提高。与传统的风冷空调系统相比,液体比热容和密度均远大于空气,因此液冷系统成为数据中心改善冷却效果、降低能耗的必然选择。梳理了冷板式液冷、浸没式液冷和喷淋式液冷三种数据中心液冷技术领域的研究进展,系统分析了冷板式液冷及微通道设计、浸没式液冷及射流冲击冷却效果、喷淋式液冷表面改性和喷嘴结构优化等方面的研究工作及存在的问题,展望了液冷系统未来的研究方向。
中图分类号:
杨磊, 杨晖, 徐婧芳, 祝秀娟. 数据中心液体冷却技术研究综述[J]. 化工学报, DOI: 10.11949/0438-1157.20250995.
Lei YANG, Hui YANG, Jingfang XU, Xiujuan ZHU. Review of research on liquid cooling technology for data centers[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250995.
| 时间 | 文件名 | 内容 |
|---|---|---|
| 2013 | 《关于数据中心建设布局的指导意见》 | 新建数据中心PUE ≤ 1.5,整合、改造和升级数据中心暂定PUE降低到2.0以下[ |
| 2019 | 《关于加强绿色数据中心建设的指导意见》 | 新建大型、超大型数据中心的PUE ≤ 1.4,高能耗老旧设备基本淘汰[ |
| 2021 | 《新型数据中心发展三年行动计划》 | 新建大型及以上数据中心PUE ≤ 1.3,严寒和寒冷地区力争降低到1.25以下[ |
| 2021 | 《贯彻落实碳达峰碳中和目标要求 推动数据中心和5G等新型基础设施绿色高质量发展实施方案》 | 全国新建大型、超大型数据中心平均PUE ≤ 1.3,国家枢纽节点降到1.25以下[ |
| 2024 | 《数据中心绿色低碳发展专项行动计划》 | 新建及改扩建大型和超大型数据中心PUE ≤ 1.25,国家枢纽节点数据中心PUE ≤ 1.2[ |
表1 数据中心PUE指导意见汇总
Table 1 Summary of data center PUE guidelines
| 时间 | 文件名 | 内容 |
|---|---|---|
| 2013 | 《关于数据中心建设布局的指导意见》 | 新建数据中心PUE ≤ 1.5,整合、改造和升级数据中心暂定PUE降低到2.0以下[ |
| 2019 | 《关于加强绿色数据中心建设的指导意见》 | 新建大型、超大型数据中心的PUE ≤ 1.4,高能耗老旧设备基本淘汰[ |
| 2021 | 《新型数据中心发展三年行动计划》 | 新建大型及以上数据中心PUE ≤ 1.3,严寒和寒冷地区力争降低到1.25以下[ |
| 2021 | 《贯彻落实碳达峰碳中和目标要求 推动数据中心和5G等新型基础设施绿色高质量发展实施方案》 | 全国新建大型、超大型数据中心平均PUE ≤ 1.3,国家枢纽节点降到1.25以下[ |
| 2024 | 《数据中心绿色低碳发展专项行动计划》 | 新建及改扩建大型和超大型数据中心PUE ≤ 1.25,国家枢纽节点数据中心PUE ≤ 1.2[ |
| [1] | International Data Corporation. IDC DataSphere最新趋势预测(IDC DataSphere: Latest trends and forecast)[EB/OL]. [2025-09-03]. . |
| [2] | 中国信息通信研究院. 综合算力评价研究报告[R]. 北京: 中国信息通信研究院, 2024. |
| China Academy of Information and Communications Technology. Research report on comprehensive computing power evaluation[R]. Beijing: CAICT, 2024. | |
| [3] | 中国信息通信研究院产业与规划所,内蒙古和林格尔新区. 中国绿色算力发展研究报告[R]. 北京:中国信息通信研究院,2024. |
| Industry and Planning Institute, China Academy of Information and Communications Technology, and Horinger New District, Inner Mongolia. Research report on the development of China's green computing power[R]. Beijing: CAICT, 2024. | |
| [4] | 王永真, 唐豪, 魏一鸣, 等. 中国数据中心综合能耗及其灵活性预测[J]. 北京理工大学学报(社会科学版), 2025, 27(2): 12-18. |
| Wang Y Z, Tang H, Wei Y M, et al. Comprehensive energy consumption and flexibility forecast of data centers in China[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2025, 27(2): 12-18. | |
| [5] | Huang J W, Chen C, Guo G Y, et al. A calculation model for typical data center cooling system[J]. Journal of Physics: Conference Series, 2019, 1304(1): 012022. |
| [6] | International Organization for Standardization, International Electrotechnical Commission. Information technology -Data centres - Key performance indicators - Part 2: Power usage effectiveness (PUE) [S]. Switzerland: ISO/IEC, 2016. |
| [7] | 工业和信息化部,国家发展和改革委员会,国土资源部,国家电力监管委员会,国家能源局. 关于数据中心建设布局的指导意见:工信部联通〔2013〕13号[EB/OL]. [2025-09-03]. . |
| Ministry of Industry and Information Technology of the People's Republic of China, National Development and Reform Commission, Ministry of Land and Resources, State Electricity Regulatory Commission, National Energy Administration. Guiding opinions on the construction and layout of data centers: Gong Xin Bu Lian Tong [2013]No. 13[EB/OL]. [2025-09-03]. . | |
| [8] | 工业和信息化部,国家机关事务管理局,国家能源局. 关于加强绿色数据中心建设的指导意见:工信部联节〔2019〕24号[EB/OL]. [2025-09-03]. . |
| Ministry of Industry and Information Technology of the People's Republic of China, Government Offices Administration of the State Council, National Energy Administration. Guiding opinions on strengthening the construction of green data centers: Gong Xin Bu Lian Jie [2019]No. 24[EB/OL]. [2025-09-03]. . | |
| [9] | 工业和信息化部. 新型数据中心发展三年行动计划(2021-2023年):工信部通信〔2021〕76号[EB/OL]. [2025-09-03]. . |
| Ministry of Industry and Information Technology of the People's Republic of China. Three-year action plan for the development of new data centers (2021-2023): Gong Xin Bu Tong Xin [2021]No. 76[EB/OL]. [2025-09-03]. . | |
| [10] | 国家发展改革委,中央网信办,工业和信息化部,国家能源局.贯彻落实碳达峰碳中和目标要求推动数据中心和5G等新型基础设施绿色高质量发展实施方案:发改高技〔2021〕1742号[EB/OL]. [2025-09-03]. . |
| National Development and Reform Commission, Cyberspace Administration of China, Ministry of Industry and Information Technology, National Energy Administration. Implementation Plan for promoting the green and high-quality development of new infrastructure such as data centers and 5G to implement the carbon peak and carbon neutrality goals: Fa Gai Gao Ji [2021]No. 1742[EB/OL]. [2025-09-03]. . | |
| [11] | 国家发展改革委,工业和信息化部,国家能源局,国家数据局.数据中心绿色低碳发展专项行动计划:发改环资〔2024〕970号[EB/OL]. [2025-09-03]. . |
| National Development and Reform Commission, Ministry of Industry and Information Technology, National Energy Administration, National Data Administration. Data center green and low-carbon development special action plan: Fa Gai Huan Zi [2024]No. 970[EB/OL]. [2025-09-03]. . | |
| [12] | NVIDIA Corporation. NVIDIA Blackwell ultra datasheet[EB/OL]. [2025-12-25]. . |
| [13] | 赛迪顾问股份有限公司. 2023-2024年中国液冷数据中心市场研究年度报告[R/OL]. [2025-09-03]. . |
| CCID Consulting Co., Ltd. 2023-2024 Annual report on market research of China's liquid-cooled data centers [R/OL]. [2025-09-03]. . | |
| [14] | Wu Z J, Zhang G Y, Lu S A, et al. A comprehensive review of cold plate liquid cooling technology for data centers[J]. Chemical Engineering Science, 2025, 310: 121525. |
| [15] | Chen X G, Wang X S. Microchannel cold plate heat transfer and flow resistance characteristics calculation and structure optimization[J]. Journal of Physics: Conference Series, 2020, 1676(1): 012204. |
| [16] | Guggari S I. Analysis of thermal performance metrics: application to CPU cooling in HPC servers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(2): 222-232. |
| [17] | Zhang Q Y, Feng Z F, Zhang J X, et al. Design of a mini-channel heat sink for high-heat-flux electronic devices[J]. Applied Thermal Engineering, 2022, 216: 119053. |
| [18] | Cao H Q, Yang Z, Hu S Z, et al. Multi-layer microchannel cooling for large-area high-power electronics[C]//2025 26th International Conference on Electronic Packaging Technology (ICEPT). August 5-7, 2025, Shanghai, China. IEEE, 2025: 1-4. |
| [19] | Yang Z C, Yao Q F, Wang Y, et al. Optimization of heat transfer and flow performance of microchannel liquid-cooled plate based on orthogonal test[J]. Buildings, 2025, 15(6): 905. |
| [20] | Ozguc S, Wang Q Y, Narayanan A, et al. Design optimization of manifold integrated skived cold plates for two-phase flow-boiling[C]//2025 41st Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). March 10-14, 2025, San Jose, CA, USA. IEEE, 2025: 30-36. |
| [21] | Chainer T J, Schultz M D, Parida P R, et al. Improving data center energy efficiency with advanced thermal management[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1228-1239. |
| [22] | Wu Z H, Xiao W, He H Y, et al. Jet-enhanced manifold microchannels for cooling electronics up to a heat flux of 3, 000 W cm-2 [J]. Nature Electronics, 2025, 8(9): 810-817. |
| [23] | Yang S D, Cao B Q, Wu Z, et al. Experimental study of a SiC manifold microchannel heat sink under background and hotspot heating scenarios at ultra-high heat flux[J]. International Journal of Heat and Mass Transfer, 2026, 254: 127657. |
| [24] | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. |
| [25] | Peng Y H, Wang D H, Li X Y, et al. Cooling chip on PCB by embedded active microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123251. |
| [26] | Hadad Y, Fallahtafti N, Choobineh L, et al. Performance analysis and shape optimization of an impingement microchannel cold plate[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(8): 1304-1319. |
| [27] | Hadad Y, Pejman R, Ramakrishnan B, et al. Geometric optimization of an impinging cold-plate with a trapezoidal groove used for warm water cooling[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). May 29 - June 1, 2018, San Diego, CA, USA. IEEE, 2018: 673-682. |
| [28] | Gharaibeh A R, Manaserh Y M, Tradat M I, et al. Using a multi-inlet/outlet manifold to improve heat transfer and flow distribution of a pin fin heat sink[J]. Journal of Electronic Packaging, 2022, 144(3): 031017. |
| [29] | Hoang C H, Mohsenian G, Fallatafti N, et al. Effects of different coolants on the cooling performance of an impingement microchannel cold plate[C]//2021 37th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). March 22-26, 2021, San Jose, CA, USA. IEEE, 2021: 43-49. |
| [30] | Hoang C H, Fallahtafti N, Rangarajan S, et al. Impact of fin geometry and surface roughness on performance of an impingement two-phase cooling heat sink[J]. Applied Thermal Engineering, 2021, 198: 117453. |
| [31] | Manaserh Y A, Gharaibeh A R, Tradat M I, et al. Multi-objective optimization of 3D printed liquid cooled heat sink with guide vanes for targeting hotspots in high heat flux electronics[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122287. |
| [32] | Fallahtafti N, Hosseini F, Hadad Y, et al. Experimental characterization and geometrical optimization of a commercial two-phase designed cold plate[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107457. |
| [33] | Samal S K, Chang H C, Fulpagare Y, et al. Thermal management of data centers: Chip-scale cooling using novel distributed inlet–outlet jet impingement liquid cold plate[J]. Applied Thermal Engineering, 2025, 271: 126360. |
| [34] | Naphon P, Nakharintr L, Wiriyasart S. Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2018, 126: 924-932. |
| [35] | Zhang Y, Zhang P T, Chen L, et al. Numerical study on thermal and hydraulic performance of a stacked-plate jet-impingement/microchannel heat sink[J]. Applied Thermal Engineering, 2023, 225: 120134. |
| [36] | Hu H Z, Chen C M, Li C, et al. Experimental investigation of roll bond liquid cooling plates for server chip heat dissipation[J]. Applied Thermal Engineering, 2023, 226: 120284. |
| [37] | Shia D, Yang J, Sivapalan S, et al. Corrosion study on single-phase liquid cooling cold plates with inhibited propylene glycol/water coolant for data centers[J]. Journal of Manufacturing Science and Engineering, 2021, 143(11): 111012. |
| [38] | Badhe P, Kale H, Darve R, et al. Design, fabrication, and thermal performance evaluation of cold plates for high-performance computing[J]. Sādhanā, 2024, 49(2): 117. |
| [39] | Fan Y H, Yang J, Chuang J. FSW manufacturing process of cold plates compared to brazing for data center liquid cooling[C]//2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). June 1-4, 2021, San Diego, CA, USA. IEEE, 2021: 179-182. |
| [40] | Al-Zaidi A H, Mahmoud M M, Karayiannis T G. Flow boiling in copper and aluminium microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123101. |
| [41] | Wu Z H, He Y Z, Zheng J W, et al. A novel cost efficient cold plate liquid cooling solution for data center deployment[C]//2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). May 30 - June 2, 2023, Orlando, FL, USA. IEEE, 2023: 1-7. |
| [42] | Ali A M, Rona A, Kadhim H T, et al. Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid[J]. Applied Thermal Engineering, 2021, 191: 116817. |
| [43] | Shahi P, Saini S, Bansode P, et al. A comparative study of energy savings in a liquid-cooled server by dynamic control of coolant flow rate at server level[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 616-624. |
| [44] | Kasukurthy R, Rachakonda A, Agonafer D. Design and optimization of control strategy to reduce pumping power in dynamic liquid cooling[J]. Journal of Electronic Packaging, 2021, 143(3): 031001. |
| [45] | Shahi P, Deshmukh A, Hurnekar H Y, et al. Numerical investigation on effect of target coolant delivery in liquid-cooled microchannel heat sinks[J]. Journal of Enhanced Heat Transfer, 2023, 30(1): 35-52. |
| [46] | Kong R, Zhang H N, Tang M S, et al. Enhancing data center cooling efficiency and ability: a comprehensive review of direct liquid cooling technologies[J]. Energy, 2024, 308: 132846. |
| [47] | Zheng S, Su C S, Yang X P, et al. A comprehensive review of single-phase immersion cooling in data centres[J]. Applied Thermal Engineering, 2025, 272: 126385. |
| [48] | Yuan L H, Wang Y, Kosonen R, et al. Comparative study on heat dissipation performance of pure immersion and immersion jet liquid cooling system for single server[J]. Buildings, 2024, 14(9): 2635. |
| [49] | Matsuoka M, Matsuda K, Kubo H. Liquid immersion cooling technology with natural convection in data center[C]//2017 IEEE 6th International Conference on Cloud Networking (CloudNet). September 25-27, 2017, Prague, Czech Republic. IEEE, 2017: 1-7. |
| [50] | Hnayno M, Chehade A, Klaba H, et al. Experimental investigation of a data-centre cooling system using a new single-phase immersion/liquid technique[J]. Case Studies in Thermal Engineering, 2023, 45: 102925. |
| [51] | Huang Y P, Ge J L, Chen Y P, et al. Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124023. |
| [52] | Sarangi S, Saini S, McAfee E, et al. Server level impacts on CPU cooling capability in single-phase immersion[C]//2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). May 28-31, 2024, Aurora, CO, USA. IEEE, 2024: 1-7. |
| [53] | Huang Y P, Liu B, Xu S J, et al. Experimental study on the immersion liquid cooling performance of high-power data center servers[J]. Energy, 2024, 297: 131195. |
| [54] | Liu H M, Chang Z. Multi-objective optimization of temperature uniformity in the immersion liquid cooling cabinet with Taguchi-based grey relational analysis[J]. International Communications in Heat and Mass Transfer, 2024, 154: 107395. |
| [55] | Khoshvaght-Aliabadi M, Ghodrati P, Nasrolahzadeh A, et al. Optimization of heat sinks for data center server CPUs cooled via single-phase immersion cooling[J]. Applied Thermal Engineering, 2025, 280: 127790. |
| [56] | Ding B, Xia F F, He L, et al. A novel concept for performance enhancement of immersion-cooled data center servers[J]. International Communications in Heat and Mass Transfer, 2024, 159: 107980. |
| [57] | Muneeshwaran M, Lin Y C, Wang C C. Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid[J]. International Communications in Heat and Mass Transfer, 2023, 145: 106843. |
| [58] | Li X Q, Guo S T, Sun H W, et al. Experimental study of the performance of liquid cooling tank used for single-phase immersion cooling data center[J]. Case Studies in Thermal Engineering, 2024, 63: 105386. |
| [59] | Taddeo P, Romaní J, Summers J, et al. Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data centre[J]. Applied Thermal Engineering, 2023, 234: 121260. |
| [60] | Wang C X, Yu H, Xian L, et al. Study on the operation strategy of the water cooling system in the single-phase immersion cooling data center considering cooling tower performance[J]. Energy and Buildings, 2024, 324: 114890. |
| [61] | Liu C L, Hao N, Zhang T B, et al. Optimization of data-center immersion cooling using liquid air energy storage[J]. Journal of Energy Storage, 2024, 90: 111806. |
| [62] | Zhang C B, Wang H J, Huang Y P, et al. Immersion liquid cooling for electronics: Materials, systems, applications and prospects[J]. Renewable and Sustainable Energy Reviews, 2025, 208: 114989. |
| [63] | Zhang Y Y, Wang Y, Kosonen R, et al. Numerical research on the flow and heat transfer characteristics in the immersion jet cooling for servers[J]. Case Studies in Thermal Engineering, 2024, 60: 104748. |
| [64] | Liu C D, Huang Y P, Zhang C B. Efficient jet-assisted single-phase immersion liquid cooling for high heat-flux servers[J]. Applied Thermal Engineering, 2025, 259: 124935. |
| [65] | Huang Y P, Liu C D, Ding B, et al. Machine learning-optimized jet-enhanced immersion liquid cooling for high-power data centers[J]. International Communications in Heat and Mass Transfer, 2025, 169: 109654. |
| [66] | Azarifar M, Arik M. Liquid synthetic jets for high flux electronics cooling[J]. Applied Thermal Engineering, 2025, 261: 125007. |
| [67] | Jin P H, Zhang X, Zhang X T, et al. Immersed jet impingement heat transfer for servers in immersion cooling data center: a parametric study[J]. Applied Thermal Engineering, 2025, 274: 126628. |
| [68] | Wu X L, Yang J L, Liu Y, et al. Investigations on heat dissipation performance and overall characteristics of two-phase liquid immersion cooling systems for data center[J]. International Journal of Heat and Mass Transfer, 2025, 239: 126575. |
| [69] | Zhou G H, Zhou J Z, Huai X L, et al. A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers[J]. Applied Thermal Engineering, 2022, 210: 118289. |
| [70] | Suresh P, Chakravarthy B. Deep learning algorithms for temperature prediction in two-phase immersion-cooled data centres[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2024, 34(8): 2917-2942. |
| [71] | Zhang C, Sun X Q, Han Z W, et al. Energy saving potential analysis of two-phase immersion cooling system with multi-mode condenser[J]. Applied Thermal Engineering, 2023, 219: 119614. |
| [72] | Zhang Y H, Gao Y Y, Wang Y, et al. Immersion phase-change thermal management system coupled with loop thermosyphons for utilization in data centers cooling[J]. Energy Conversion and Management, 2026, 348: 120688. |
| [73] | Mohammed N M, El-Maghlany W M, Elhelw M, et al. Performance improvement of high-density data center via two-phase liquid immersion cooling[J]. Journal of Thermal Analysis and Calorimetry, 2025, 150(6): 4279-4294. |
| [74] | Zhao T T, Sun R F, Hou X K, et al. Simulation study of influencing factors of immersion phase-change cooling technology for data center servers[J]. Energies, 2023, 16(12): 4640. |
| [75] | Kanbur B B, Wu C L, Fan S M, et al. Two-phase liquid-immersion data center cooling system: Experimental performance and thermoeconomic analysis[J]. International Journal of Refrigeration, 2020, 118: 290-301. |
| [76] | Wu C L, Tong W, Kanbur B B, et al. Full-scale two-phase liquid immersion cooing data center system in tropical environment[C]//2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). May 28-31, 2019, Las Vegas, NV, USA. IEEE, 2019: 703-708. |
| [77] | 潘洋洋, 向军, 肖玮. 基于喷淋液冷系统的数据中心节能降耗研究[J]. 通信电源技术, 2019, 36(S1): 192-194. |
| Pan Y Y, Xiang J, Xiao W. Research on energy saving and consumption reduction in data center based on spray cooling system[J]. Telecom Power Technology, 2019, 36(S1): 192-194. | |
| [78] | 谢文韬, 余承学, 谢昕言, 等. 数据中心冷却节能技术及余热回收技术研究进展[J]. 暖通空调, 2025, 55(2): 1-9, 25. |
| Xie W T, Yu C X, Xie X Y, et al. Research progress of cooling energy-saving technology and waste heat recovery technology of data centers[J]. Heating Ventilating & Air Conditioning, 2025, 55(2): 1-9, 25. | |
| [79] | 王瑜, 吴露露, 康娜, 等. 数据中心喷雾冷却系统研究进展和要素分析[J]. 科学技术与工程, 2021, 21(18): 7391-7403. |
| Wang Y, Wu L L, Kang N, et al. Research progress and factors analysis of spray cooling system in data center[J]. Science Technology and Engineering, 2021, 21(18): 7391-7403. | |
| [80] | Xu R N, Wang G Y, Jiang P X. Spray cooling on enhanced surfaces: a review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144: 010802. |
| [81] | Wang N B, Guo Y H, Huang C Q, et al. Advances in direct liquid cooling technology and waste heat recovery for data center: a state-of-the-art review[J]. Journal of Cleaner Production, 2024, 477: 143872. |
| [82] | GaneshKumar P, Sivalingam V, Vigneswaran V S, et al. Spray cooling for hydrogen vehicle, electronic devices, solar and building (low temperature) applications: a state-of-art review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113931. |
| [83] | Zhang T S, Mo Z M, Xu X Y, et al. Advanced study of spray cooling: from theories to applications[J]. Energies, 2022, 15(23): 9219. |
| [84] | Li Z Y, Luo H L, Jiang Y G, et al. Comprehensive review and future prospects on chip-scale thermal management: Core of data center's thermal management[J]. Applied Thermal Engineering, 2024, 251: 123612. |
| [85] | Bao J, Wang Y, Xu X J, et al. Analysis on the influences of atomization characteristics on heat transfer characteristics of spray cooling[J]. Sustainable Cities and Society, 2019, 51: 101799. |
| [86] | Liu P F, Kandasamy R, Ho J Y, et al. Comparative study on the enhancement of spray cooling heat transfer using conventional and bio-surfactants[J]. Applied Thermal Engineering, 2021, 194: 117047. |
| [87] | Sanches M, Marseglia G, Ribeiro A P C, et al. Nanofluids characterization for spray cooling applications[J]. Symmetry, 2021, 13(5): 788. |
| [88] | Figueiredo M, Marseglia G, Moita A S, et al. Thermofluid characterization of nanofluid spray cooling combining phase Doppler interferometry with high-speed visualization and time-resolved IR thermography[J]. Energies, 2020, 13(22): 5864. |
| [89] | Wang S M, Zhou Z F, Sang X H, et al. Coupling dynamic thermal analysis and surface modification to enhance heat dissipation of R410A spray cooling for high-power electronics[J]. Energy, 2023, 284: 129224. |
| [90] | Zhou Z F, Lin X W, Ji R J, et al. Enhancement of heat transfer on micro- and macro- structural surfaces in close-loop R410A flashing spray cooling system for heat dissipation of high-power electronics[J]. Applied Thermal Engineering, 2023, 223: 119978. |
| [91] | Hu Y Y, Lei Y F, Liu X L, et al. Record-high heat transfer performance of spray cooling on 3D-printed hierarchical micro/nano-structured surface[J]. Science Bulletin, 2025, 70(2): 223-231. |
| [92] | Opoku R, Kizito J P. Experimental investigation of heat transfer characteristics and performance of smooth and wicking surfaces in spray cooling for high heat flux applications[J]. Results in Engineering, 2020, 6: 100119. |
| [93] | Vladyko I, Miskiv N, Serdyukov V, et al. Influence of the nozzle-to-surface distance on spray cooling efficiency[J]. Fluids, 2023, 8(7): 191. |
| [94] | Yang T, Zhang W, Wang J Y, et al. Numerical investigation on heat transfer enhancement and surface temperature non-uniformity improvement of spray cooling[J]. International Journal of Thermal Sciences, 2022, 173: 107374. |
| [95] | Xia Y K, Gao X, Li R. Management of surface cooling non-uniformity in spray cooling[J]. Applied Thermal Engineering, 2020, 180: 115819. |
| [96] | Wang S M, Zhou Z F, Chen B, et al. Dynamic thermal management of flashing spray cooling by the frequency conversion of compressor[J]. Applied Thermal Engineering, 2023, 218: 119322. |
| [97] | Xu H J, Wang J F, Li B, et al. Electrospray characteristics and cooling performance of dielectric fluid HFE-7100[J]. Energy, 2022, 259: 125072. |
| [98] | Liu P, Kandasamy R, Wong T N. Experimental study and application of an artificial neural network (ANN) model on pulsed spray cooling heat transfer on a vertical surface[J]. Experimental Thermal and Fluid Science, 2021, 123: 110347. |
| [99] | Jiang L J, Jiang S L, Cheng W L, et al. Experimental study on heat transfer performance of a novel compact spray cooling module[J]. Applied Thermal Engineering, 2019, 154: 150-156. |
| [100] | Qenawy M, Chen Y Q, Zhu Y C, et al. Improving fluid flow and heat transfer of cryogen spray cooling using sweeping cold air jet[J]. Physics of Fluids, 2024, 36(4): 043302. |
| [101] | 付立宸, 费筱禛, 管祥添, 等. 数据中心浸没式液冷用含氟冷却液应用研究进展[J]. 制冷与空调, 2025, 25(6): 68-75. |
| Fu L C, Fei X Z, Guan X T, et al. Application research advances of fluorinated coolants for immersion liquid cooling in data center[J]. Refrigeration and Air-Conditioning, 2025, 25(6): 68-75. | |
| [102] | 3Company M. 3M Electronic fluorinated fluids[EB/OL]. [2025-11-17]. . |
| [103] | 柯媛华, 成军, 杨瑛洁, 等. 数据中心液冷技术研究[J]. 邮电设计技术, 2023(12): 35-41. |
| Ke Y H, Cheng J, Yang Y J, et al. Study on data center liquid cooling technology[J]. Designing Techniques of Posts and Telecommunications, 2023(12): 35-41. | |
| [104] | Zhou K, Yu X L, Xie B G, et al. Immersion cooling technology development status of data center[J]. Science and Technology for Energy Transition, 2024, 79: 41. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [3] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [4] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [5] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [6] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [7] | 黄琮琪, 邵双全. 液冷数据中心余热驱动的压缩-吸收式制冷系统特性研究[J]. 化工学报, 2025, 76(S1): 326-335. |
| [8] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [9] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [10] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [11] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [12] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [13] | 胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837. |
| [14] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| [15] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号