化工学报

• •    

旋流式冷却造粒塔的优势与风险分析

郑文杰1(), 杨景轩1,2(), 孙刚3, 鲍鹏飞4, 丛有祥4, 郝晓刚1,2   

  1. 1.太原理工大学化学与化工学院,山西 太原 030024
    2.山西科化技术服务有限公司,山西 太原 030027
    3.如皋市双马化工有限公司,江苏 如皋 226571
    4.南通赛孚机械设备有限公司,江苏 如皋 226571
  • 收稿日期:2025-11-13 修回日期:2025-12-26 出版日期:2026-01-21
  • 通讯作者: 杨景轩
  • 作者简介:郑文杰(2001—),男,硕士研究生,2317279936@qq.com
  • 基金资助:
    国家自然科学基金项目(22378285);山西省基础研究计划自然科学研究项目(202203021211164);国家留学基金委2022年度西部地区人才培养特别项目,地方合作项目地方创新子项目;山西科化技术服务有限公司项目(20210507)

Advantages and risks of swirling cooling granulation towers

Wenjie ZHENG1(), Jingxuan YANG1,2(), Gang SUN3, Pengfei BAO4, Youxiang CONG4, Xiaogang HAO1,2   

  1. 1.College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Kehua Technology Service Co. , Ltd. , Taiyuan 030027, Shanxi, China
    3.Shuangma Chemical Co. , Ltd. of Rugao City, Rugao 226571, Jiangsu, China
    4.Nantong Saifu Machinery Equipment Co. , Ltd. , Rugao 226571, Jiangsu, China
  • Received:2025-11-13 Revised:2025-12-26 Online:2026-01-21
  • Contact: Jingxuan YANG

摘要:

改善两相的流动和传热特性是提升造粒塔性能的关键。本文采用计算颗粒流体力学方法研究了硬脂酸在旋流式并流冷却造粒塔和常规逆流组合塔中的传热和造粒特性。结果表明:旋流塔中全部液滴降温至凝固点所需要的高度大约是常规塔的一半。颗粒在旋流塔内平均停留时间为5.3 s,常规塔的对应值为8.5 s,这意味着前者的生产效率更高。相较于常规塔,旋流式造粒塔在大部分区域内显示出更优的颗粒温度分布均匀性,这表明旋转并流工艺有助于实现更均匀的液滴凝固过程。旋流塔具有以上优势的原因在于入塔气体因旋转形成更高的流速,进而使气固湍动程度增强和对流传热系数提高。此外,气流旋转形成的离心力场促使液滴向塔壁迁移,存在黏壁风险,但迁移过程也是对流传热最强的阶段,合理调控流场可消除风险。

关键词: 造粒, 传热强化, 两相流动, 场流协同, 计算颗粒流体力学

Abstract:

Improving the flow and heat transfer characteristics of the two phases is key to enhancing the performance of granulation towers. This paper uses computational particle hydrodynamics to study the heat transfer and granulation characteristics of stearic acid in a swirling co-current cooling granulation tower and a conventional counter-current combined tower. The results show that the height required for all droplets to cool to their freezing point in the cyclone tower is approximately half that of the conventional tower. The average residence time of particles in the swirling tower is 5.3 s, compared to 8.5 s in the conventional tower, indicating higher production efficiency. Compared to the conventional tower, the swirling granulation tower exhibits better uniformity of particle temperature distribution in most areas, suggesting that the rotating co-current process helps achieve a more uniform droplet solidification process. The advantages of the swirling tower are due to the higher flow velocity of the inlet gas caused by rotation, which enhances gas-solid turbulence and increases the convective heat transfer coefficient. Furthermore, the centrifugal force field generated by the rotating airflow promotes droplet migration towards the tower wall, posing a risk of wall adhesion; however, this migration process is also the stage with the strongest convective heat transfer, and this risk can be eliminated by properly controlling the flow field.

Key words: granulation, heat transfer enhancement, two-phase flow, field-flow synergy, computational particle fluid dynamics

中图分类号: