化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4501-4514.DOI: 10.11949/0438-1157.20230936
收稿日期:
2023-09-08
修回日期:
2023-10-17
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
吴慧英
作者简介:
李昀(1992—),男,博士,1002942037@sjtu.edu.cn
基金资助:
Yun LI1,2(), Jie CAO2, Xia HUA1, Huiying WU1()
Received:
2023-09-08
Revised:
2023-10-17
Online:
2023-11-25
Published:
2024-01-22
Contact:
Huiying WU
摘要:
微通道内的流动沸腾被公认为是一种极具潜力的高功率密度微电子设备/器件散热技术,但微通道的极限散热能力依赖于其下游的状态。为了进一步提升流动沸腾过程的传热特性并从根本上解决下游过早干涸的问题,基于逆流式微通道的概念,将传统顺流平行微通道(CPM)分为两段,提出并设计了短程逆流式微通道(SFCM)。实验研究了去离子水在质量流速为118~219 kg/(m2·s)时,过冷度为50℃下的流动沸腾传热特性,并与传统顺流平行微通道的实验结果进行了对比。研究发现,与传统顺流平行微通道相比,短程逆流式微通道的临界热通量(CHF)和平均传热系数(HTCave)分别实现了160.6%~204.4%和91.2%~115.4%的提升。同时,相较于传统顺流平行微通道,短程逆流式微通道的压降和泵功分别降低了76.9%~80.4%和44.9%~48.2%。更重要的是,短程逆流式微通道实现了沸腾不稳定性的有效抑制。
中图分类号:
李昀, 曹杰, 华夏, 吴慧英. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514.
Yun LI, Jie CAO, Xia HUA, Huiying WU. Experimental investigation on flow boiling heat transfer characteristics in short flow passage counter-flow microchannels[J]. CIESC Journal, 2023, 74(11): 4501-4514.
图2 传统顺流平行微通道与短程逆流式微通道的对比示意图
Fig.2 Schematic diagram comparison for traditional parallel-flow straight microchannels and short flow passage counter-flow microchannels
参数 | 不确定度 |
---|---|
流量 | ±2% |
压力 | ±0.04% |
环境温度 | ±2℃ |
测量温度 | ±0.2℃ |
进出口温度 | ±0.2℃ |
电压 | ±0.93% |
电流 | ±1.77% |
热通量 | ±5.79% |
平均传热系数 | ±10.52% |
表1 不确定度
Table 1 Uncertainties
参数 | 不确定度 |
---|---|
流量 | ±2% |
压力 | ±0.04% |
环境温度 | ±2℃ |
测量温度 | ±0.2℃ |
进出口温度 | ±0.2℃ |
电压 | ±0.93% |
电流 | ±1.77% |
热通量 | ±5.79% |
平均传热系数 | ±10.52% |
图8 相同总质量流量下的CHF比较结果(a)及测得CHF与理论物理计算值的对比(b)
Fig.8 Comparison results for CHF (a), comparison of CHF between experimental and theoretical results under same total mass flow rate (b)
1 | 杨振, 姚元鹏, 李昀, 等. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
Yang Z, Yao Y P, Li Y, et al. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium[J]. CIESC Journal, 2022, 73(3): 1093-1101. | |
2 | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1): 97-108. | |
3 | Kim H, Yang H. Electromigration-induced failure of GaN multi-quantum well light emitting diode[J]. Electronics Letters, 2000, 36(10): 908-910. |
4 | 杨建明. 高密度封装电子设备先进热管理技术发展现状[J]. 电子机械工程, 2016, 32(5): 20-24. |
Yang J M. Development status of advanced thermal management technology for high-density packaged electronic equipment[J]. Electro-Mechanical Engineering, 2016, 32(5): 20-24. | |
5 | Kandlikar S G, Colin S, Peles Y, et al. Heat transfer in microchannels—2012 status and research needs[J]. Journal of Heat Transfer, 2013, 135(9): 942-955. |
6 | Garimella S V, Persoons T, Weibel J A, et al. Electronics thermal management in information and communications technologies: challenges and future directions[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1191-1205. |
7 | Ganesan V, Patel R, Hartwig J, et al. Universal critical heat flux (CHF) correlations for cryogenic flow boiling in uniformly heated tubes[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120678. |
8 | Deng D, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
9 | Tadrist L. Review on two-phase flow instabilities in narrow spaces[J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 54-62. |
10 | 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. |
Du B G, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989. | |
11 | Xia G D, Tang Y X, Zong L X, et al. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall[J]. International Communications in Heat and Mass Transfer, 2019, 101: 89-102. |
12 | Cheng X, Yao Y, Wu H. An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120843. |
13 | Lu C T, Pan C. Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites[J]. Experimental Thermal and Fluid Science, 2011, 35(5): 810-815. |
14 | Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. |
15 | 谢洪涛, 李星辰, 绳春晨, 等. 微通道换热器结构及优化设计研究进展[J]. 真空与低温, 2020, 26(4): 310-316. |
Xie H T, Li X C, Sheng C C, et al. Progress in structure and optimal design of microchannel heat sink[J]. Vacuum & Cryogenics, 2020, 26(4): 310-316. | |
16 | Liang G, Mudawar I. Review of channel flow boiling enhancement by surface modification, and instability suppression schemes[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118864. |
17 | Yang F, Dai X, Kuo C J, et al. Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 402-412. |
18 | Li W, Yang F, Alam T, et al. Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (Ⅰ): Characterizations of flow boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 116: 208-217. |
19 | Li W, Ma J, Alam T, et al. Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities[J]. International Journal of Heat and Mass Transfer, 2018, 123: 354-366. |
20 | Huang G, Li W, Ma J, et al. High-frequency alternating nucleate boiling of water enabled by microslot arrays in microchannels [J]. International Journal of Heat and Mass Transfer, 2020, 150: 119271. |
21 | Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limitations[J]. Journal of Electronic Packaging, 2011, 133(4): 041002. |
22 | Tibiriçá C B, Ribatski G. Flow boiling in micro-scale channels—synthesized literature review[J]. International Journal of Refrigeration, 2013, 36(2): 301-324. |
23 | Li Y, Wu H Y. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122500. |
24 | Li Y, Yao Y P, Wu H Y. Experimental investigation of flow boiling characteristics in counter-flow microchannels with different mass flux distributions[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122768. |
25 | Jiang X, Zhang S, Li Y, et al. High performance heat sink with counter flow diverging microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120344. |
26 | Li Y, Wu H Y, Yao Y P. Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123025 |
27 | Jung K W, Cho E, Lee H, et al. Thermal and manufacturing design considerations for silicon-based embedded microchannel-3D manifold coolers (EMMCs)(Part 1): Experimental study of single-phase cooling performance with R-245fa[J]. Journal of Electronic Packaging, 2020, 142(3): 031117. |
28 | Radwan A, Ookawara S, Ahmed M. Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks[J]. Applied Energy, 2019, 241: 404-419. |
29 | Qu W, Siu-Ho A. Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 1853-1863. |
30 | Balasubramanian K, Lee P S, Teo C J, et al. Flow boiling heat transfer and pressure drop in stepped fin microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 67: 234-252. |
31 | Lee P S, Garimella S V. Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 789-806. |
32 | Qu W, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks(Ⅰ): Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
33 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of heat transfer, 1965, 87(4): 453-468. |
34 | Li W, Wang Z, Yang F, et al. Supercapillary architecture-activated two-phase boundary layer structures for highly stable and efficient flow boiling heat transfer[J]. Advanced Materials, 2020, 32(2): 1905117. |
35 | Bodla K K, Murthy J Y, Garimella S V. Evaporation analysis in sintered wick microstructures[J]. International Journal of Heat and Mass Transfer, 2013, 61: 729-741. |
36 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
37 | 李昀, 杨振, 姚元鹏, 等. 流量分配对逆流微通道内流动沸腾影响的研究[J]. 工程热物理学报, 2023, 44(3): 712-719. |
Li Y, Yang Z, Yao Y P, et al. Study on the effect of flow distribution on flow boiling in counter-flow microchannels[J].Journal of Engineering Thermophysics, 2023, 44(3): 712-719. | |
38 | Shah R K, London A L. Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data[M]. New York: Academic Press, 1978. |
39 | Lee P S, Garimella S V. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3060-3067. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[4] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[5] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[6] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[7] | 徐健, 张东辉, 黄俊, 冯磊, 杨丰源, 高祥. 结构参数对烧结微通道流动沸腾性能的影响[J]. 化工学报, 2023, 74(11): 4548-4558. |
[8] | 禹言芳, 刘桓辰, 孟辉波, 刘励图, 李毓, 吴剑华. Lightnin静态混合器内气泡分散流体动力学特性实验研究[J]. 化工学报, 2022, 73(8): 3565-3575. |
[9] | 周云龙, 刘起超. 起伏振动倾斜上升管气液两相流摩擦阻力分析与计算[J]. 化工学报, 2022, 73(2): 643-652. |
[10] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
[11] | 周培, 张秀平, 唐景春, 杨磊, 叶斌, 黄荣华. 过冷流动沸腾中气泡浮升直径的实验及理论研究[J]. 化工学报, 2022, 73(1): 194-203. |
[12] | 翁俊旗, 刘鑫磊, 余佳豪, 施尧, 叶光华, 屈进, 段学志, 李金兵, 周兴贵. 蜂窝状催化剂中空结构对固定床反应器压降的影响[J]. 化工学报, 2022, 73(1): 266-274. |
[13] | 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193. |
[14] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[15] | 田朋,王德武,王若瑾,唐猛,郝晓磊,张少峰. 摇摆流化床的气固流动特性[J]. 化工学报, 2021, 72(10): 5102-5113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||