化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2929-2938.DOI: 10.11949/0438-1157.20240113
收稿日期:
2024-01-25
修回日期:
2024-04-12
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
包志铭
作者简介:
吕方明(2000—),男,硕士研究生,fangming@tju.edu.cn
基金资助:
Fangming LYU1(), Zhiming BAO1,2(), Bowen WANG1, Kui JIAO1,2
Received:
2024-01-25
Revised:
2024-04-12
Online:
2024-08-25
Published:
2024-08-21
Contact:
Zhiming BAO
摘要:
质子交换膜燃料电池在装配过程中,气体扩散层(GDL)会因为装配压力产生形变而侵入流道。基于流体体积法建立截面形状分别为矩形、梯形和正方形的流道在GDL不同侵入程度下的数值模型,并对其进行气-液两相流行为研究,得到了液体滞留、排水效果、GDL面传质面积等方面规律。GDL侵入流道时,液体在排出过程中破碎程度减小,液体更容易积聚在一起,影响液体滞留效果。矩形截面流道排液时间更长,梯形和正方形截面流道液体排出时刻滞后。GDL侵入流道时,进气流速的增加使得较为聚集的液体排出速度稳定,并未大幅减小。GDL侵入流道程度较大时,矩形截面流道更多液滴黏附在流道侧壁与GDL面使得GDL面覆盖率较大,梯形截面流道顶部会形成稳定的薄膜流,排液速度大且GDL面覆盖率小。
中图分类号:
吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938.
Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell[J]. CIESC Journal, 2024, 75(8): 2929-2938.
流道截面 | 流道尺寸 (x×y×z) | 接触角θ/(°) | 侵入比φ | 入口气体速度Uin/(m/s) (随侵入程度递增) |
---|---|---|---|---|
矩形 | 0.7 mm×0.4 mm×20 mm | 壁面 100 GDL 130 | 0、0.125、0.175、0.225 | 6、6.46、6.72、7 |
梯形 | (0.5+0.9)/2 mm×0.4 mm×20 mm | 6、6.72、7、7.3 | ||
正方形 | 0.53 mm×0.53 mm×20 mm | 6、6.46、6.72、7 |
表1 算例参数设置
Table 1 Parameters of case
流道截面 | 流道尺寸 (x×y×z) | 接触角θ/(°) | 侵入比φ | 入口气体速度Uin/(m/s) (随侵入程度递增) |
---|---|---|---|---|
矩形 | 0.7 mm×0.4 mm×20 mm | 壁面 100 GDL 130 | 0、0.125、0.175、0.225 | 6、6.46、6.72、7 |
梯形 | (0.5+0.9)/2 mm×0.4 mm×20 mm | 6、6.72、7、7.3 | ||
正方形 | 0.53 mm×0.53 mm×20 mm | 6、6.46、6.72、7 |
图4 GDL侵入流道液体行为文献实验结果[37]与仿真结果对比
Fig.4 Comparison between experimental results[37] and simulation results on liquid behavior with GDL intrusion into gas channel
图5 三种流道排水过程液体分布(从左到右分别为矩形截面流道、梯形截面流道和正方形截面流道)
Fig.5 Liquid distribution in drainage processes of three types of channels (from left to right: rectangular cross-section channel, trapezoidal cross-section channel, and square cross-section channel)
1 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | de las Nieves Camacho M, Jurburg D, Tanco M. Hydrogen fuel cell heavy-duty trucks: review of main research topics[J]. International Journal of Hydrogen Energy, 2022, 47(68): 29505-29525. |
3 | Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12(2): 463-491. |
4 | Ajanovic A, Haas R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10049-10058. |
5 | Guan D Q, Wang B W, Zhang J G, et al. Hydrogen society: from present to future[J]. Energy & Environmental Science, 2023, 16(11): 4926-4943. |
6 | Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. |
7 | Dubau L, Castanheira L, Maillard F, et al. A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies[J]. WIREs Energy and Environment, 2014, 3(6): 540-560. |
8 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
9 | Taherian R. RETRACTED: a review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. |
10 | Bao Z M, Niu Z Q, Jiao K. Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells[J]. Applied Energy, 2020, 280: 116011. |
11 | Kandlikar S G, Lu Z, Domigan W E, et al. Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 1741-1752. |
12 | Schmittinger W, Vahidi A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1): 1-14. |
13 | Yousfi-Steiner N, Moçotéguy P, Candusso D, et al. A review on PEM voltage degradation associated with water management: impacts, influent factors and characterization[J]. Journal of Power Sources, 2008, 183(1): 260-274. |
14 | Theodorakakos A, Ous T, Gavaises M, et al. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells[J]. Journal of Colloid and Interface Science, 2006, 300(2): 673-687. |
15 | Ferreira R B, Falcão D S, Oliveira V B, et al. Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method—a review[J]. Journal of Power Sources, 2015, 277: 329-342. |
16 | Le A D, Zhou B, Shiu H R, et al. Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels[J]. Journal of Power Sources, 2010, 195(21): 7302-7315. |
17 | Cai Y H, Chen T, Yang T Q, et al. Mechanism of water transport in serpentine cathode channels of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 209: 90-104. |
18 | Mancusi E, Fontana É, Ulson de Souza A A, et al. Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2261-2273. |
19 | Qin Y Z, Li X G, Jiao K, et al. Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate[J]. Applied Energy, 2014, 113: 116-126. |
20 | Kim J H, Lee G G, Kim W T. Comparison of liquid water dynamics in bent gas channels of a polymer electrolyte membrane fuel cell with different channel cross sections in a channel flooding situation[J]. Energies, 2017, 10(6): 748. |
21 | Niu Z Q, Wang R F, Jiao K, et al. Direct numerical simulation of low Reynolds number turbulent air-water transport in fuel cell flow channel[J]. Science Bulletin, 2017, 62(1): 31-39. |
22 | Bao Z M, Wang Y, Jiao K. Liquid droplet detachment and dispersion in metal foam flow field of polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2020, 480: 229150. |
23 | Zamel N, Li X G. Effective transport properties for polymer electrolyte membrane fuel cells—with a focus on the gas diffusion layer[J]. Progress in Energy and Combustion Science, 2013, 39(1): 111-146. |
24 | Morgan J M, Datta R. Understanding the gas diffusion layer in proton exchange membrane fuel cells(Ⅰ): How its structural characteristics affect diffusion and performance[J]. Journal of Power Sources, 2014, 251: 269-278. |
25 | Bao Z M, Li Y N, Zhou X, et al. Transport properties of gas diffusion layer of proton exchange membrane fuel cells: effects of compression[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121608. |
26 | Zhou X, Niu Z Q, Li Y N, et al. Investigation of two-phase flow in the compressed gas diffusion layer microstructures[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26498-26516. |
27 | Zhang H, Xiao L S, Chuang P Y A, et al. Coupled stress-strain and transport in proton exchange membrane fuel cell with metallic bipolar plates[J]. Applied Energy, 2019, 251: 113316. |
28 | Liu Y, Liu P W, Ren J Y, et al. Effect of flow channel shapes of proton exchange membrane fuel cell on its performances[J]. International Journal of Electrochemical Science, 2022, 17(3): 220319. |
29 | Hoppe E, Janßen H, Müller M, et al. The impact of flow field plate misalignment on the gas diffusion layer intrusion and performance of a high-temperature polymer electrolyte fuel cell[J]. Journal of Power Sources, 2021, 501: 230036. |
30 | Carrère P, Prat M. Impact of non-uniform wettability in the condensation and condensation-liquid water intrusion regimes in the cathode gas diffusion layer of proton exchange membrane fuel cell[J]. International Journal of Thermal Sciences, 2019, 145: 106045. |
31 | Niu Z Q, Bao Z M, Wu J T, et al. Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells[J]. Applied Energy, 2018, 232: 443-450. |
32 | Bao Z M, Niu Z Q, Jiao K. Analysis of single- and two-phase flow characteristics of 3-D fine mesh flow field of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019, 438: 226995. |
33 | Keller N, Hübner P, von Unwerth T. Investigation of intrusion effects of a gas diffusion layer into channel cross sections depending on channel parameters of metallic bipolar plates[J]. International Journal of Hydrogen Energy, 2020, 45(30): 15366-15379. |
34 | Ali Atyabi S, Afshari E, Wongwises S, et al. Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances[J]. Energy, 2019, 179: 490-501. |
35 | Lorenzini-Gutierrez D, Kandlikar S G, Hernandez-Guerrero A, et al. Residence time of water film and slug flow features in fuel cell gas channels and their effect on instantaneous area coverage ratio[J]. Journal of Power Sources, 2015, 279: 567-580. |
36 | Tongpun P, Bumrungthaichaichan E, Wattananusorn S. Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation[J]. Songklanakarin Journal of Science and Technology (SJST), 2014, 36(4): 471-475. |
37 | Jeon D H, Kim H. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method[J]. Journal of Power Sources, 2015, 294: 393-405. |
[1] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[2] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[3] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[4] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[5] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[6] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
[7] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[8] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[9] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[10] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[11] | 王芝安, 兰忠, 马学虎. 喷嘴参数对超临界水热燃烧特性影响的模拟[J]. 化工学报, 2024, 75(6): 2190-2200. |
[12] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[13] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[14] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[15] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||