化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2787-2799.DOI: 10.11949/0438-1157.20240233
邓爱明1,2,3(), 何玉荣1,2,3(), 唐天琪1,2,3, 胡彦伟1,2,3
收稿日期:
2024-02-29
修回日期:
2024-04-17
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
何玉荣
作者简介:
邓爱明(1997—),男,博士研究生,18742599308@163.com
基金资助:
Aiming DENG1,2,3(), Yurong HE1,2,3(), Tianqi TANG1,2,3, Yanwei HU1,2,3
Received:
2024-02-29
Revised:
2024-04-17
Online:
2024-08-25
Published:
2024-08-21
Contact:
Yurong HE
摘要:
喷雾流化床内湿法造粒过程已广泛应用于能源、制药、食品和化工等各种工业领域,然而流化床中的颗粒生长过程涉及到复杂的气-液-固三相相互作用,进而难以实现造粒过程的精确控制。基于离散单元模型,通过添加液桥力模型和颗粒生长模型开展喷雾流化床内导流板结构对床内颗粒流动和生长特性影响的研究,分析颗粒流化状态对颗粒生长均匀性的影响。研究发现,在本文工况内,随着床内导流板长度的增加、导流板间距和高度的降低,颗粒流化状态得到改善,颗粒生长区域进一步扩大,颗粒循环时间增加,单次颗粒涂层增长量降低,颗粒生长得更均匀。
中图分类号:
邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799.
Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds[J]. CIESC Journal, 2024, 75(8): 2787-2799.
图1 喷动床的结构示意图(a)和不同网格数下颗粒轴向速度分布(h=100 mm)(b)
Fig.1 Structure diagram of spouted bed (a) and particle axial velocity distribution under different grid numbers (h=100 mm)(b)
模拟参数 | 物理量 | 数值 |
---|---|---|
喷动床 | x、y、z方向尺寸/m | 0.145×0.02×1 |
x、y、z方向网格数 | 29×3×100 | |
导流板高度HB/m | 0.06/0.07/0.08/0.09 | |
导流板长度LB/m | 0.06/0.07/0.08/0.09 | |
导流板间距WB/m | 0.022/0.026/0.030/0.034 | |
颗粒 | 颗粒直径dp/m | 0.003 |
颗粒密度ρp/(kg/m3) | 2505 | |
颗粒数Np | 12000 | |
法向弹性恢复系数en | 0.97 | |
切向弹性恢复系数et | 0.33 | |
摩擦系数(颗粒-颗粒)μp-p | 0.10 | |
摩擦系数(颗粒-壁面)μp-w | 0.30 | |
液滴 | 液滴直径dd/m | 0.0004 |
液滴密度ρd/(kg/m3) | 997 | |
液体黏度μd/(Pa·s) | 0.01 | |
喷入液滴数目Nd/s-1 | 240000 | |
气体 | 喷口气速usp/(m/s) | 43.5 |
背景气速ubg/(m/s) | 2.4 | |
气体剪切黏度μg/(Pa·s) | 1.8×10-5 |
表1 模型参数设置
Table 1 Parameters used in simulation
模拟参数 | 物理量 | 数值 |
---|---|---|
喷动床 | x、y、z方向尺寸/m | 0.145×0.02×1 |
x、y、z方向网格数 | 29×3×100 | |
导流板高度HB/m | 0.06/0.07/0.08/0.09 | |
导流板长度LB/m | 0.06/0.07/0.08/0.09 | |
导流板间距WB/m | 0.022/0.026/0.030/0.034 | |
颗粒 | 颗粒直径dp/m | 0.003 |
颗粒密度ρp/(kg/m3) | 2505 | |
颗粒数Np | 12000 | |
法向弹性恢复系数en | 0.97 | |
切向弹性恢复系数et | 0.33 | |
摩擦系数(颗粒-颗粒)μp-p | 0.10 | |
摩擦系数(颗粒-壁面)μp-w | 0.30 | |
液滴 | 液滴直径dd/m | 0.0004 |
液滴密度ρd/(kg/m3) | 997 | |
液体黏度μd/(Pa·s) | 0.01 | |
喷入液滴数目Nd/s-1 | 240000 | |
气体 | 喷口气速usp/(m/s) | 43.5 |
背景气速ubg/(m/s) | 2.4 | |
气体剪切黏度μg/(Pa·s) | 1.8×10-5 |
图4 不同导流板长度下颗粒循环时间和颗粒单次生长涂层厚度分布
Fig.4 Particle cycle time and coating thickness distribution for single growth of particles under different lengths of draft plates
图7 不同导流板间距下颗粒循环时间和颗粒单次生长的涂层厚度分布
Fig.7 Particle cycle time and coating thickness distribution for single growth of particles under different gaps between draft plates
图10 不同导流板高度下颗粒循环时间和颗粒单次生长的涂层厚度分布
Fig.10 Particle cycle time and coating thickness distribution for single growth of particles under different heights of draft plates
长度/m | 间距/m | 高度/m | 涂层颗粒 比例 | 颗粒直径 标准差/10-4 m |
---|---|---|---|---|
0.06 | 0.024 | 0.06 | 0.868 | 1.68 |
0.07 | 0.024 | 0.06 | 0.879 | 1.62 |
0.08 | 0.024 | 0.06 | 0.889 | 1.56 |
0.09 | 0.024 | 0.06 | 0.890 | 1.49 |
0.06 | 0.022 | 0.08 | 0.892 | 1.54 |
0.06 | 0.026 | 0.08 | 0.881 | 1.57 |
0.06 | 0.030 | 0.08 | 0.869 | 1.59 |
0.06 | 0.034 | 0.08 | 0.840 | 1.64 |
0.08 | 0.024 | 0.07 | 0.869 | 1.67 |
0.08 | 0.024 | 0.08 | 0.844 | 1.73 |
0.08 | 0.024 | 0.09 | 0.830 | 1.79 |
表2 不同导流板结构下颗粒生长情况
Table 2 Particle growth distribution under different guide plate structures
长度/m | 间距/m | 高度/m | 涂层颗粒 比例 | 颗粒直径 标准差/10-4 m |
---|---|---|---|---|
0.06 | 0.024 | 0.06 | 0.868 | 1.68 |
0.07 | 0.024 | 0.06 | 0.879 | 1.62 |
0.08 | 0.024 | 0.06 | 0.889 | 1.56 |
0.09 | 0.024 | 0.06 | 0.890 | 1.49 |
0.06 | 0.022 | 0.08 | 0.892 | 1.54 |
0.06 | 0.026 | 0.08 | 0.881 | 1.57 |
0.06 | 0.030 | 0.08 | 0.869 | 1.59 |
0.06 | 0.034 | 0.08 | 0.840 | 1.64 |
0.08 | 0.024 | 0.07 | 0.869 | 1.67 |
0.08 | 0.024 | 0.08 | 0.844 | 1.73 |
0.08 | 0.024 | 0.09 | 0.830 | 1.79 |
1 | Wu C Y, Kleinebudde P, Reynolds G. Particulate product manufacturing — an in-silico approach[J]. Powder Technology, 2018, 337: 1-2. |
2 | Wang B, Sun X R, Xiang J, et al. A critical review on granulation of pharmaceuticals and excipients: principle, analysis and typical applications[J]. Powder Technology, 2022, 401: 117329. |
3 | Singh A K, Tsotsas E. Influence of polydispersity and breakage on stochastic simulations of spray fluidized bed agglomeration[J]. Chemical Engineering Science, 2022, 247: 117022. |
4 | Fries L, Antonyuk S, Heinrich S, et al. DEM–CFD modeling of a fluidized bed spray granulator[J]. Chemical Engineering Science, 2011, 66(11): 2340-2355. |
5 | Turton R. The application of modeling techniques to film-coating processes[J]. Drug Development and Industrial Pharmacy, 2010, 36(2): 143-151. |
6 | 蔡葵. 喷雾流化床中含液滴作用的气固流动和造粒过程研究[D]. 南京: 东南大学, 2017. |
Cai K. Gas-solid flow with droplets and granulation in a spray fluidized bed[D]. Nanjing: Southeast University, 2017. | |
7 | Milacic E, Nunez Manzano M, Madanikashani S, et al. Liquid injection in a fluidised bed: temperature uniformity[J]. Chemical Engineering Science, 2022, 256: 117622. |
8 | Pan S Y, Ma J L, Liu D Y, et al. Theoretical and experimental insight into the homogeneous expansion of wet particles in a fluidized bed[J]. Powder Technology, 2022, 397: 117016. |
9 | Singh M, Shirazian S, Ranade V, et al. Challenges and opportunities in modelling wet granulation in pharmaceutical industry — a critical review[J]. Powder Technology, 2022, 403: 117380. |
10 | 李恒. 基于CFD-DEM模型的喷雾流化床颗粒流动、传热及包衣均匀性的模拟研究[D]. 南京: 东南大学, 2022. |
Li H. Simulation study of particle flow, heat transfer and coating uniformity in spray fluidized bed based on CFD-DEM model[D]. Nanjing: Southeast University, 2022. | |
11 | 周航. 制药流化床颗粒制备过程数值模拟及实验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2017. |
Zhou H. Investigation of gas-solids flow in a pharmaceutical fluidized bed drying process by CFD simulation and ECT measurement[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017. | |
12 | Grohn P, Oesau T, Heinrich S, et al. Investigation of the influence of wetting on the particle dynamics in a fluidized bed rotor granulator by MPT measurements and CFD-DEM simulations[J]. Powder Technology, 2022, 408: 117736. |
13 | Ge R H, Ye J M, Wang H G, et al. Measurement of particle concentration in a Wurster fluidized bed by electrical capacitance tomography sensors[J]. AIChE Journal, 2014, 60(12): 4051-4064. |
14 | 周云龙, 卢志叶, 王猛. 基于递归分析的喷雾气固流化床团聚状态识别[J]. 化工学报, 2018, 69(9): 3835-3842. |
Zhou Y L, Lu Z Y, Wang M. Recursive analysis and agglomerate state recognition of spray gas-solid fluidized bed[J]. CIESC Journal, 2018, 69(9): 3835-3842. | |
15 | 任振华, 金辉, 刘石, 等. 煤炭超临界水流化床制氢反应器内颗粒流动及传热特性的数值分析[J]. 工程热物理学报, 2020, 41(1): 154-160. |
Ren Z H, Jin H, Liu S, et al. Numerical analysis of particle flow and heat transfer characteristics in a coal-supercritical water fluidized bed reactor for hydrogen production[J]. Journal of Engineering Thermophysics, 2020, 41(1): 154-160. | |
16 | 李铁男, 赵碧丹, 赵鹏, 等. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
Li T N, Zhao B D, Zhao P, et al. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed[J]. CIESC Journal, 2022, 73(6): 2649-2661. | |
17 | 王洪远, 纪律, 孟繁旭, 等. 基于动态双重网格下喷动床滞止区流动特性CFD-DEM数值模拟[J]. 化工学报, 2021, 72(11): 5563-5572. |
Wang H Y, Ji L, Meng F X, et al. CFD-DEM numerical simulation of flow characteristics in stagnation zone of spouted bed based on dynamic dual grid[J]. CIESC Journal, 2021, 72(11): 5563-5572. | |
18 | Link J M, Godlieb W, Deen N G, et al. Discrete element study of granulation in a spout-fluidized bed[J]. Chemical Engineering Science, 2007, 62(1/2): 195-207. |
19 | van Buijtenen M S, Deen N G, Heinrich S, et al. A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed[J]. The Canadian Journal of Chemical Engineering, 2009, 87(2): 308-317. |
20 | Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings[J]. Chemical Engineering Science, 2008, 63(23): 5728-5770. |
21 | Zhu L H, Zhao Z Y, Liu C, et al. CFD-DEM simulations of a fluidized bed with droplet injection: effects on flow patterns and particle behavior[J]. Advanced Powder Technology, 2023, 34(1): 103897. |
22 | Li L, Rasmuson A, Ingram A, et al. PEPT study of particle cycle and residence time distributions in a Wurster fluid bed[J]. AIChE Journal, 2015, 61(3): 756-768. |
23 | Akgün I S, Erkey C. Investigation of hydrodynamic behavior of alginate aerogel particles in a laboratory scale Wurster fluidized bed[J]. Molecules, 2019, 24(16): 2915. |
24 | 谢恒来, 吴曼, 赵军, 等. 导向管喷动流化床中废弃印刷线路板的非金属颗粒包覆改性[J]. 化工学报, 2015, 66(3): 1185-1193. |
Xie H L, Wu M, Zhao J, et al. Coating modification of non-metal particles of waste printed circuit boards in spout-fluid bed with draft tube[J]. CIESC Journal, 2015, 66(3): 1185-1193. | |
25 | Yang S L, Sun Y H, Zhang L Q, et al. Numerical investigation on the effect of draft plates on spouting stability and gas–solid characteristics in a spout-fluid bed[J]. Chemical Engineering Science, 2016, 148: 108-125. |
26 | Kieckhefen P, Lichtenegger T, Pietsch S, et al. Simulation of spray coating in a spouted bed using recurrence CFD[J]. Particuology, 2019, 42: 92-103. |
27 | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
28 | Muguruma Y, Tanaka T, Tsuji Y. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator)[J]. Powder Technology, 2000, 109(1/2/3): 49-57. |
29 | Tang T Q, He Y R, Ren A X, et al. Experimental study and DEM numerical simulation of dry/wet particle flow behaviors in a spouted bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15353-15367. |
30 | Lian G P, Thornton C, Adams M J. Discrete particle simulation of agglomerate impact coalescence[J]. Chemical Engineering Science, 1998, 53(19): 3381-3391. |
31 | Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a plane wall(Ⅰ): Motion through a quiescent fluid[J]. Chemical Engineering Science, 1967, 22(4): 637-651. |
32 | Beetstra R, van der Hoef M A, Kuipers J A M. Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations[J]. Chemical Engineering Science, 2007, 62(1/2): 246-255. |
33 | Koch D L, Hill R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics, 2001, 33: 619-647. |
34 | van Buijtenen M S, van Dijk W J, Deen N G, et al. Numerical and experimental study on multiple-spout fluidized beds[J]. Chemical Engineering Science, 2011, 66(11): 2368-2376. |
35 | Deng A M, Tang T Q, Sun S S, et al. Particle coating growth behaviors in a spray fluidized bed based on gas-liquid-solid quasi-three-phase DEM numerical simulation[J]. Chemical Engineering Journal, 2023, 476: 146480. |
36 | Sutkar V S, Deen N G, Patil A V, et al. CFD-DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection[J]. Chemical Engineering Journal, 2016, 288: 185-197. |
[1] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[2] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[3] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[4] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[5] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
[6] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[7] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[8] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[9] | 战德康, 孙腾, 王香竹, 吴明周, 吴曼, 郭庆杰. 非球形湿颗粒导向管喷动流化床流动特性[J]. 化工学报, 2024, 75(6): 2166-2179. |
[10] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[11] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[12] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[13] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[14] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[15] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||