CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2472-2479.DOI: 10.11949/0438-1157.20190013
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2019-01-04
Revised:
2019-04-15
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhenghong LUO
通讯作者:
罗正鸿
作者简介:
马旺宇(1995—),男,硕士研究生,<email>1017540809@qq.com</email>
基金资助:
CLC Number:
Wangyu MA, Zhenghong LUO. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed[J]. CIESC Journal, 2019, 70(7): 2472-2479.
马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479.
Add to citation manager EndNote|Ris|BibTeX
Rαmf取值 | 非整次项化简 / 迭代公式 |
---|---|
Table 1 Non-integral simplifications for calculating expansion ratio and iterative formula for convergence
Rαmf取值 | 非整次项化简 / 迭代公式 |
---|---|
1 | 郑晓野, 蒲文灏, 岳晨, 等. 采用改进的曳力模型模拟 2D 鼓泡流化床的流化特性[J]. 过程工程学报, 2015, 15(5): 737-743. |
ZhengX Y, PuW H, YueC, et al. A modified drag model used for CFD simulation on the fluidization characteristics of 2D bubbling fluidized bed[J]. The Chinese Journal of Process Engineering, 2015, 15(5): 737-743. | |
2 | 曾涛, 柳忠彬, 黄卫星, 等. 方形气固流化床从鼓泡到湍动流态化转变速度预测模型[J]. 过程工程学报, 2011, 11(3): 376-379. |
ZengT, LiuZ B, HuangW X, et al. Prediction model of transition velocity from bubbling to turbulent fluidization in a square gas-solid fluidized bed[J]. The Chinese Journal of Process Engineering, 2011, 11(3): 376-379. | |
3 | 王维, 王璐瑶, 许英梅, 等. 流化床氛围下多孔物料干燥传热传质的数值模拟[J]. 化工学报, 2012, 63(4): 1044-1049. |
WangW, WangL Y, XuY M, et al. Numerical simulation on porous material drying with fluidized bed[J]. CIESC Journal, 2012, 63(4): 1044-1049. | |
4 | 杨秀娟, 阎维平. 烟气流态化褐煤干燥与非稳态传热传质过程研究[J]. 热力发电, 2018, (4): 1-8. |
YangX J, YanW P. Study on the process of the flue gas fluidized lignite drying and unsteady heat and mass transfer[J]. Thermal Power Generation, 2018, (4): 1-8. | |
5 | 张健平, 赵周能. 油菜籽流化床恒速干燥传热传质特性及模型研究[J]. 农业工程学报, 2017, 33(13): 287-295. |
ZhangJ P, ZhaoZ N. Heat and mass transfer characteristics and model of rapeseed (Bassica rapus) fluidized-bed drying with constant drying rate [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 287-295. | |
6 | 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6): 2003-2012. |
ChenC, QiH Y. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012. | |
7 | 王会宁, 丁建亮. 流化床烟气脱硫反应器内气固流场数值模拟与分析[J]. 节能技术, 2014, 32(4): 324-326. |
WangH N, DingJ L. Analyses and simulation of hydrodynamics of gas and particles in fluidized bed flue gas desulphurization towers[J]. Energy Conservation Technology, 2014, 32(4): 324-326. | |
8 | 吕小林. 基于气泡和聚团的结构模型及其应用[J]. 化工进展, 2017, 36(11): 64-72. |
LyuX L. Structural model based on bubbles and clusters and its applications[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 64-72. | |
9 | 周勇, 高凯歌, 李海念, 等. 超细颗粒流化聚团尺寸的预测模型[J]. 中国粉体技术, 2017, (5): 7-12. |
ZhouY, GaoK G, LiH N, et al. Models for estimating agglomerate size of ultrafine particles in fluidized beds[J]. China Powder Science and Technology, 2017, (5): 7-12. | |
10 | 朱育丹, 陆小华, 郭晓静, 等. 材料化学工程科学内涵及方法初探: 从介观尺度界面流体行为出发认知材料[J]. 化工学报, 2013, 64(1): 148-154. |
ZhuY D, LuX H, GuoX J, et al. Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering: understanding materials based on confined interfacial fluid behavior on mesoscale[J]. CIESC Journal, 2013, 64(1): 148-154. | |
11 | 金余其, 王彬全, 万嘉瑜, 等. 基于介观尺度模拟的污泥絮凝形态及机理[J]. 化工学报, 2010, 61(3): 725-731. |
JinY Q, WangB Q, WanJ Y, et al. Morphology and mechanism of sludge flocculation based on mesoscopic simulation[J]. CIESC Journal, 2010, 61(3): 725-731. | |
12 | 高智雪, 郝振华. 加压二维鼓泡床气固流动特性的数值模拟[J]. 煤炭转化, 2018, (2): 44-50. |
GaoZ X, HaoZ H. Numerical simulation on gas-solid flow characteristics of a 2D pressurized bubbling fluidized bed[J]. Coal Conversion, 2018, (2): 44-50. | |
13 | 张长练, 曾涛, 刘少北, 等. 循环湍动流化床的提升管内FCC颗粒流动特性的数值模拟[J]. 科技通报, 2018, 34(4): 109-117. |
ZhangC L, ZengT, LiuS B, et al. Numerical simulation of the flow characteristics of FCC particles in the circulation turbulent fluidized bed[J]. Bulletin of Science and Technology, 2018, 34(4): 109-117. | |
14 | 杨新, 闫俊伏, 麻哲瑞, 等. 双循环流化床石英砂颗粒流动特性研究[J]. 华北电力大学学报(自然科学版), 2018, (3): 81-87. |
YangX, YanJ F, MaZ R, et al. Study on flow characteristics of quartz sand particles in dual circulating fluidized bed[J]. Journal of North China Electric Power University(Natural Science Edition), 2018, (3): 81-87. | |
15 | 黄克松, 赵晓军, 杨敬一, 等. 加压条件下气固流化床流动特性的CFD模拟研究[J]. 计算机与应用化学, 2014, 31(2): 181-184. |
HuangK S, ZhaoX J, YangJ Y, et al. The CFD simulation study of flow characteristics of three dimension flow in a fluidized bed reactor at elevated pressure[J]. Computers and Applied Chemistry, 2014, 31(2): 181-184. | |
16 | 黄克松, 赵晓军, 杨敬一, 等. 加压条件下气固流化床计算流体力学模型的建立[J]. 计算机与应用化学, 2013, (12): 1417-1421. |
HuangK S, ZhaoX J, YangJ Y, et al. The establish of computational fluid dynamics model for three dimension flow in a gas solid fluidized-bed reactor at elevated pressure[J]. Computers and Applied Chemistry, 2013, (12): 1417-1421. | |
17 | 李占勇, 王少铁, 王娟, 等. 狭缝型分布板流化床提高核桃壳颗粒的流化效果[J]. 农业工程学报, 2016, 32(9): 225-232. |
LiZ Y, WangS T, WangJ, et al. Fluidization effect of walnut shell particles in fluidized bed with slotted gas distributor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 225-232. | |
18 | 李占勇, 王少铁, 刘品达, 等. Geldart D类颗粒在狭缝型分布板流化床的流化特性研究[J]. 天津科技大学学报, 2016, 31(4): 56-59. |
LiZ Y, WangS T, LiuP D, et al. Fluidization characteristics of Geldart D type particles in a fluidizing bed with a slotted gas distributor[J]. Journal of Tianjin University of Science & Technology, 2016, 31(4): 56-59. | |
19 | WangZ J, TangJ, LuC X. Fluidization characteristics of different sizes of quartz particles in the fluidized bed[J]. Petroleum Science, 2016, 13(3): 584-591. |
20 | 吕鹏, 赵跃民. 空气重介质流化床高对流化特性影响[J]. 煤炭技术, 2016, 35(7): 296-299. |
LyuP, ZhaoY M. Effect of bed height on fluidization characteristics of air dense medium fluidized bed[J]. Coal Technology, 2016, 35(7): 296-299. | |
21 | 谭明兵, 贺靖峰, 邵换男, 等. 次生布风条件下气固重介质流化床褐煤分选提质研究[J]. 中国矿业大学学报, 2017, 46(2): 404-409. |
TanM B, HaoJ F, ShaoH N, et al. Lignite separation using a gas-solid dense medium fluidized bed with a secondary air distribution layer[J]. Journal of China University of Mining & Technology, 2017, 46(2): 404-409. | |
22 | GeldartD. Expansion of gas fluidized beds[J]. Ins. Eng. Chem. Res., 2004, 43(18): 5802-5809. |
23 | PetersM H, FanL S, SweeneyT L. Reactant dynamics in catalytic fluidized bed reactors with flow reversal of gas in the emulsion phase [J]. Chemical Engineering Science, 1982, 37(4): 553-565. |
24 | WertherJ. Fluidization Ⅳ [M]. Kunii D, Toei R, Eds. New York: Engineering Foundation, 1983: 93. |
25 | DartonR C, LaNauzeR D, DavidsonJ F, et al. Bubble growth due to coalescence in fluidized beds[J]. Trans. Ins. Chem. Eng., 1977, 55(4): 274-280. |
26 | BaeyensJ, GeldartD. Gas Fluidization Technology[M]. Chichester: John Wiley & Sons, 1986: 105. |
27 | WertherJ. Effect of gas distributor on the hydrodynamics of gas fluidized beds[J]. German Chemical Engineering, 1978, 1: 166-174. |
28 | KuniiD, LevenspielO. Fluidization Engineering [M].Oxford: Butterworth-Heinemann Limited Press, 1991. |
29 | 付芝杰. 气固分选流化床两相分布及密度调控机制研究[D]. 北京: 中国矿业大学, 2017. |
FuZ J. Research on the mechanism of two-phase distribution and density regulation of separating gas-solid fluidized bed[D]. Beijing: China University of Mining and Technology, 2017. | |
30 | DubrawskiK, TebianianS, BiH T, et al. Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques[J]. Powder Technology, 2013, 235(2): 203-220. |
31 | FengR, LiJ, ChengZ, et al. Influence of particle size distribution on minimum fluidization velocity and bed expansion at elevated pressure[J]. Powder Technology, 2017, 320: 27-36. |
32 | BabuS P, ShahB, TalwalkarA. Fluidization correlations for coal gasification materials—minimum fluidization velocity and fluidized bed expansion ratio[J]. AIChE Symp. Ser., 1978, 74(176): 176. |
33 | GunnD J, HilalN. The expansion of gas-fluidised beds in bubbling fluidisation[J]. Chemical Engineering Science, 1997, 52(16): 2811-2822. |
34 | ZhuL T, TahaA B R, LuoZ H. Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling[J]. Chemical Engineering Science, 2019, 196: 478-492. |
35 | ZhuL T, LiuY X, LuoZ H. An effective three-marker drag model via sub-grid modeling for turbulent fluidization[J]. Chemical Engineering Science, 2018, 192: 759-773. |
36 | BiH T, FanL S. Regime transition in gas-solid circulating fluidized bed[C]//AIChE Annual Meeting. LA, 1991: 17-22. |
37 | BaiD, JinY, YuZ. Flow regimes in circulating fluidized beds[J]. Chemical Engineering and Technology, 1993, 16(5): 307-313. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[7] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[8] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[9] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[10] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[11] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[12] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[13] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[14] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[15] | Qiaoling SU, Junfeng WANG, Wei ZHANG, Shuiqing ZHAN, Tianyi WU. Experimental study on polarization motion characteristics of bubbles in a low conductivity working medium [J]. CIESC Journal, 2022, 73(9): 3861-3869. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||