CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 690-697.DOI: 10.11949/0438-1157.20221061
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wanyuan HE1(), Yiyu CHEN1, Chunying ZHU1, Taotao FU1, Xiqun GAO2, Youguang MA1()
Received:
2022-07-28
Revised:
2022-10-27
Online:
2023-03-21
Published:
2023-02-05
Contact:
Youguang MA
何万媛1(), 陈一宇1, 朱春英1, 付涛涛1, 高习群2, 马友光1()
通讯作者:
马友光
作者简介:
何万媛(1997—),女,硕士研究生,wanyuanhe@tju.edu.cn
基金资助:
CLC Number:
Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges[J]. CIESC Journal, 2023, 74(2): 690-697.
何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
Add to citation manager EndNote|Ris|BibTeX
MDEA溶液浓度c/% | 密度 ρ/(kg·m-3) | 黏度 µ/(mPa·s) | 表面张力 σ / (mN·m-1) |
---|---|---|---|
10 20 30 | 1005.4 1015.2 1025.0 | 1.290 1.941 3.092 | 59.30 55.20 53.00 |
Table 1 Physical properties of MDEA aqueous solution
MDEA溶液浓度c/% | 密度 ρ/(kg·m-3) | 黏度 µ/(mPa·s) | 表面张力 σ / (mN·m-1) |
---|---|---|---|
10 20 30 | 1005.4 1015.2 1025.0 | 1.290 1.941 3.092 | 59.30 55.20 53.00 |
Fig.4 Effects of gas and liquid flow rates and MDEA concentration on volumetric mass transfer coefficient kLa (solid symbols for the microchannel with array bulges, hollow symbols for non-array bulge microchannel)
Fig.5 The effect of gas and liquid flow rates and MDEA concentration on CO2 absorption efficiency and the bubble residence time (solid symbols for the microchannel with array bulges, hollow symbols for non-array bulge microchannel)
Fig.6 Effects of gas and liquid flow rates and MDEA concentration on pressure drop ΔP (solid symbols for the microchannel with array bulges, hollow symbols for non-array bulge microchannel)
Fig.7 Relationship between liquid side volumetric mass transfer coefficient and energy consumption (solid symbols for the microchannel with array bulges, hollow symbols for non-array bulge microchannel)
1 | Abdollahi S A, Mokhtariyan N, Ameri E. Design of a solar reactor based on porous nanocomposite ceramics for removal of heavy metal ions from wastewater[J]. Solar Energy, 2022, 233: 61-70. |
2 | Dai L, Shan M J, Li J P, et al. Purification and reuse of carbon black wastewater of acetylene production from natural gas by microchannel filtration[J]. Process Safety and Environmental Protection, 2022, 162: 219-229. |
3 | Yao X J, Zhang Y, Du L Y, et al. Review of the applications of microreactors[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 519-539. |
4 | Pan J, Zhang R, Lu Q B, et al. Experimental study on premixed methane-air catalytic combustion in rectangular micro channel[J]. Applied Thermal Engineering, 2017, 117: 1-7. |
5 | Chau J L H, Leung A Y L, Yeung K L. Zeolite micromembranes[J]. Lab on a Chip, 2003, 3(2): 53. |
6 | Kockmann N, Gottsponer M, Roberge D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3): 718-726. |
7 | Adamo A, Beingessner R L, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
8 | Saber M, Commenge J M, Falk L. Microreactor numbering-up in multi-scale networks for industrial-scale applications: impact of flow maldistribution on the reactor performances[J]. Chemical Engineering Science, 2010, 65(1): 372-379. |
9 | Guo R W, Fu T T, Zhu C Y, et al. Flow distribution and mass transfer of gas-liquid flow in parallel microchannels with different tree-shaped distributors: halving-width versus constant-width[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1327-1335. |
10 | Liu G T, Wang K, Lu Y C, et al. Liquid-liquid microflows and mass transfer performance in slit-like microchannels[J]. Chemical Engineering Journal, 2014, 258: 34-42. |
11 | Nieves-Remacha M J, Kulkarni A A, Jensen K F. OpenFOAM computational fluid dynamic simulations of single-phase flows in an advanced-flow reactor[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7543-7553. |
12 | 王冠球, 林冠屹, 朱春英, 等. 微通道反应器的一维放大及气液传质特性[J]. 化工学报, 2021, 72(2): 937-944. |
Wang G Q, Lin G Y, Zhu C Y, et al. One-dimensional amplification and gas-liquid mass transfer characteristics of microchannel reactor[J]. CIESC Journal, 2021, 72(2): 937-944. | |
13 | Wyss H M, Blair D L, Morris J F, et al. Mechanism for clogging of microchannels[J]. Physical Review E, 2007, 74(6): 061402. |
14 | Aubin J, Prat L, Xuereb C, et al. Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 554-559. |
15 | Liu Z D, Lu Y C, Wang J W, et al. Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: experiment and CFD simulation[J]. Chemical Engineering Journal, 2012, 181/182: 597-606. |
16 | Choi C W, Yu D I, Kim M H. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios(part Ⅱ): Bubble behaviors and pressure drop in single bubble[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5242-5249. |
17 | Hong S H, Tang Y L, Wang S F. Investigation on critical heat flux of flow boiling in parallel microchannels with large aspect ratio: experimental and theoretical analysis[J]. International Journal of Heat and Mass Transfer, 2018, 127: 55-66. |
18 | Wong H, Radke C J, Morris S. The motion of long bubbles in polygonal capillaries(part 2): Drag, fluid pressure and fluid flow[J]. Journal of Fluid Mechanics, 1995, 292: 95-110. |
19 | Jia H W, Zhang P. Investigation of the Taylor bubble under the effect of dissolution in microchannel[J]. Chemical Engineering Journal, 2016, 285: 252-263. |
20 | van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
21 | 王宜飞, 王清强, 姬德生, 等. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
Wang Y F, Wang Q Q, Ji D S, et al. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics[J]. CIESC Journal, 2022, 73(4): 1501-1514. | |
22 | Seo H S, Kim Y J. A study on the mixing characteristics in a hybrid type microchannel with various obstacle configurations[J]. Materials Research Bulletin, 2012, 47(10): 2948-2951. |
23 | Yin Y R, Guo R W, Zhu C Y, et al. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles[J]. Separation and Purification Technology, 2020, 236: 116306. |
24 | Yang L, Shi Y X, Abolhasani M, et al. Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study[J]. Lab on a Chip, 2015, 15(15): 3232-3241. |
25 | Nieves-Remacha M J, Kulkarni A A, Jensen K F. Gas-liquid flow and mass transfer in an advanced-flow reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(26): 8996-9010. |
26 | Zhang S Z, Zhu C Y, Feng H S, et al. Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions[J]. Chemical Engineering Science, 2021, 229: 116040. |
27 | Naami A, Edali M, Sema T, et al. Mass transfer performance of CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol, monoethanolamine, and N-methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6470-6479. |
28 | Mandal B P, Kundu M, Padhiyar N U, et al. Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino-2-methyl-1-propanol + diethanolamine) and (N-methyldiethanolamine + diethanolamine)[J]. Journal of Chemical & Engineering Data, 2004, 49(2): 264-270. |
29 | Haimour N, Sandall O C. Absorption of carbon dioxide into aqueous methyldiethanolamine[J]. Chemical Engineering Science, 1984, 39(12): 1791-1796. |
30 | Musterd M, van Steijn V, Kleijn C R, et al. Calculating the volume of elongated bubbles and droplets in microchannels from a top view image[J]. RSC Advances, 2015, 5(21): 16042-16049. |
31 | Jakiela S, Korczyk P M, Makulska S, et al. Discontinuous transition in a laminar fluid flow: a change of flow topology inside a droplet moving in a micron-size channel[J]. Physical Review Letters, 2012, 108(13): 134501. |
32 | Kreutzer M T, Kapteijn F, Moulijn J A, et al. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chemical Engineering Science, 2005, 60(22): 5895-5916. |
33 | Abiev R S. Modeling of pressure losses for the slug flow of a gas-liquid mixture in mini- and microchannels[J]. Theoretical Foundations of Chemical Engineering, 2011, 45(2): 156-163. |
34 | Abiev R S. Analysis of local pressure gradient inversion and form of bubbles in Taylor flow in microchannels[J]. Chemical Engineering Science, 2017, 174: 403-412. |
35 | Liu Z M, Zhang L X, Pang Y, et al. Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(12): 1-8. |
36 | Li S W, Xu J H, Wang Y J, et al. Liquid-liquid two-phase flow in pore array microstructured devices for scaling-up of nanoparticle preparation[J]. AIChE Journal, 2009, 55(12): 3041-3051. |
37 | Potdar A, Protasova L N, Thomassen L, et al. Designed porous milli-scale reactors with enhanced interfacial mass transfer in two-phase flows[J]. Reaction Chemistry & Engineering, 2017, 2(2): 137-148. |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[3] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[4] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[5] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[13] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[14] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[15] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||